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Abstract: The interpretation of membership functions of fuzzy sets as statistical 

likelihood functions leads to a probabilistic-possibilistic hierarchical description of uncertain 
knowledge. The fundamental advantage of the resulting fuzzy probabilities with respect to 
imprecise probabilities is the ability of using all the information provided by the data. This 
paper studies the possibility of using fuzzy probabilities to describe the uncertain knowledge 
about the values of the nodes of belief networks. 

 

1 Introduction 
In the present paper, membership functions of fuzzy sets are interpreted as statistical 

likelihood functions. This allows a combination of probabilistic and possibilistic uncertainty 
on the basis of the well-established theories of probability and likelihood. The resulting 
probabilistic-possibilistic hierarchical description of uncertain knowledge generalizes the 
description by means of imprecise probabilities, but only from the static point of view. In fact, 
the usual updating rule for imprecise probabilities does not use all the information provided 
by the data, and this waste of information can lead to statistical inconsistency and 
unsatisfactory results. By contrast, the probabilistic-possibilistic hierarchical model exploits 
the outstanding asymptotic properties of the likelihood function, which makes it an ideal basis 
for inference and decision making: this aspect is analyzed in Cattaneo (2005, 2007). 

In the present paper, the probabilistic-possibilistic hierarchical model is combined 
with belief networks, to describe the uncertain knowledge about the values of the involved 
variables. This leads to a generalization of Bayesian networks and credal networks, 
combining the possibility of imprecision in the probability values with the ability of using all 
the information provided by the data. Since simple fuzzy probability measures can be 
described as convex hulls of finite sets of non-normalized probability measures, the resulting 
probabilistic-possibilistic hierarchical networks have the same complexity as credal networks. 
Moreover, the graphical criterion of d-separation can be exploited, since it implies the 
conditional irrelevance of the involved variables. 

 

2  Probabilistic-Possibilistic Hierarchical Model 

Let P  be a set of probability measures on a finite set nXX ××Ω 1=  (for simplicity, 
in the present paper only the finite case is considered, but infinite sets Ω  would pose no 
problem). Each P∈P  is interpreted as a probabilistic model for the values of the random 
variables ini xxxX  ),,(: 1  (for all },{1, ni ∈ ). The interpretation of probability is not 
important: for instance the elements of P  can be statistical models, or describe the forecasts 
of a group of experts. 
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The likelihood function lik  on P  induced by the observations iii AX X⊆∈  (for each 

},{1, nIi ⊆∈ ) is defined by 

 ;} allfor  :),,{(=)( 1 IiAxxxPPlik iin ∈∈Ω∈  

lik  describes the relative ability of the probabilistic models in P  to forecast the 
observed data. Spurious modifications of the situation considered or of its mathematical 
representation can lead to likelihood functions proportional to lik  (for example, if the 
realization of an additional random variable 1+nX  describing the result of tossing a fair coin is 
also observed, then the induced likelihood function is halved). Therefore, proportional 
likelihood functions are considered equivalent; in fact, Fisher (1921, 1922) defined the 
likelihood of a statistical model as a quantity proportional to the probability of the observed 
data. Hence, only ratios )()/( 'PlikPlik  of the values of lik  for different P∈'PP,  have 

meaning: Kullback and Leibler (1951) interpreted )]()/([log 'PlikPlik  as the information in 

the data for discrimination in favor of P  against 'P , and Good (1950) considered it as the 
weight of evidence in favor of P  against 'P  provided by the data. So the likelihood function 
can be interpreted as a measure of the relative plausibility of the probabilistic models in the 
light of the observed data alone. 

The likelihood function lik  measures the relative plausibility of the elements of P , 
but a measure of the relative plausibility of the subsets of P  is often needed. A simple and 
effective way to obtain it consists in defining the plausibility of a set of probabilistic models 
as the plausibility of its best element: the result is the set function 

 )(sup Plik
P H

H
∈

  

on the power set P2  of P  (in this paper, 0=sup∅ ). Proportional set functions of this 
form are equivalent, since they correspond to equivalent likelihood functions: to underline this 
relative meaning, the expression “relative plausibility measure” is used in Cattaneo (2007) to 
denote an equivalence class of proportional set functions of this form. Their normalized 
version LR  associates to each PH⊆  the corresponding likelihood ratio statistic 

 .
)(sup

)(sup
(

Plik

Plik
LR

P

P

P

H=H)
∈

∈  

The likelihood ratio test discards the hypothesis that the data were generated by some 
H∈P  if )(HLR  is sufficiently small. In regular problems with large samples, the critical 

value for )(HLR  can be obtained from the result of Wilks (1938) that )HLR(log2−  is 

approximately 2χ  distributed under each H∈P . 

A possibility distribution on a set G  is a function [0,1]: →Gπ . The possibility 
measure on G  with possibility distribution π  is the set function 

 )(sup γπ
γ G

G
∈

  

on G2 . A possibility distribution π  on G  can also be considered as the membership 
function of a fuzzy subset of G  (see Zadeh, 1978); when π  is crisp (that is, π  can take only 
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the values 0  and 1 ), the subset is not fuzzy and π  is its indicator function on G . The 
likelihood ratio statistic LR  is a possibility measure on P  with possibility distribution 
proportional to the likelihood function lik  on P . In fact, the membership function of a fuzzy 
set has often been interpreted as a likelihood function (see for example Hisdal, 1988; Dubois 
and Prade, 1993; Dubois, 2006), even though proportional membership functions were not 
always considered equivalent (see for instance Dubois et al., 1997). In the present paper, 
membership functions and possibility distributions are interpreted as proportional to 
likelihood functions. Hence, it suffices to consider normalized fuzzy sets and normalized 
possibility measures (that is, 1=)(sup γπγ G∈  is assumed), but grades of membership and 

degrees of possibility have only a relative meaning. 

A set P  of probability measures on Ω  and a likelihood function lik  on P  can be 
interpreted as the two levels of a probabilistic-possibilistic hierarchical model for the values 
of the variables iX . The two levels describe different kinds of uncertain knowledge: in the 
first level the uncertainty is stochastic, while in the second one it is about which of the 
probabilistic models in P  is the best representation of the reality. It is important to underline 
that no probabilistic model in P  is assumed to be in some sense “true”: the elements of P  are 
simply interpreted as more or less plausible representations of the reality. By contrast, the use 
of a probability measure on P , suggested by the Bayesian approach, carries the implicit 
assumption that exactly one of the probabilistic models in P  is “true” (see Cattaneo, 2007, 
Section 3.1). The likelihood function lik  on P  can also express subjective beliefs about the 
relative plausibility of the probabilistic models in P : in this case, lik  is interpreted as if it 
were induced by hypothetical data (see also Dahl, 2005). The choice of a subjective likelihood 
function on P  seems to be better supported by intuition than the choice of a subjective 
probability measure on P : in particular, a constant likelihood function describes complete 
ignorance (in the sense of absence of information for discrimination between the probabilistic 
models). 

 

2.1  Fuzzy Probabilities and Imprecise Probabilities 

Let X  be a real-valued function of nXX ,,1  , and let )(: XEPg P  be the function 
on P  assigning to each probabilistic model the corresponding expectation of X . A likelihood 
function lik  on P  induces the (normalized) profile likelihood function 

 )(sup}){(:
=)(:

1 PlikxgLRxlik
xPgP

g
P∈

− ∝  

on the set R  of real numbers (in this paper, the exponent 1−  denotes the set function 
associating to a set its inverse image). The profile likelihood function glik  measures the 

relative plausibility of the values of g , on the basis of the above definition of the plausibility 

of a set of probabilistic models as the plausibility of its best element. In fact, glik  is the 

possibility distribution corresponding to the possibility measure 1−gLR   induced by g  on R . 
Hence, the uncertain knowledge about the expectation of X  is described by the fuzzy number 
(that is, a fuzzy subset of R ) with membership function glik : this fuzzy number can be 
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interpreted as the fuzzy expectation of X . In particular, when X  is the indicator function AI  

of a set Ω⊆A , the fuzzy expectation of AI  describes the uncertain knowledge about the 
probability of A , and can thus be interpreted as the fuzzy probability of A . 

Sometimes a fuzzy number can be a satisfactory conclusion about the expectation of 
X , but it is often necessary to evaluate the fuzzy number by one or more real numbers. The 
discussion on how to do this goes beyond the scope of the present paper, but it is important to 
note the correspondence between some natural “defuzzification methods” and the usual 
likelihood-based inference methods. In fact, the α -cut })(:{ α≥∈ xlikx gR  with (0,1]∈α  

corresponds to a likelihood-based confidence region for the expectation of X  (the coverage 
probability of this confidence region can often be approximated thanks to the result of Wilks, 
1938), and when a global maximum of glik  exists and is unique, it corresponds to the 

maximum likelihood estimate of the expectation of X . 

Since the probabilistic models outside the support 0}>)(:{= PlikP' PP ∈  of lik  have 

no influence on glik , the likelihood function can always be extended to the set of all 

probability measures on Ω , by defining it constant equal to 0  outside P . Hence, the 
hierarchical model can also be interpreted as a fuzzy probability measure on Ω , in the sense 
that it is a fuzzy subset of the set of all probability measures on Ω , with membership function 
proportional to the (extended) likelihood function. When this is crisp, it is the indicator 
function of the support 'P  of lik : there is no information for discrimination between the 
elements of 'P , and in fact the uncertain knowledge about the expectation of X  is described 
by the set }:)({= '

P PXE PG ∈  (in the sense that GIlikg = ). In particular, when 'P  is convex 

and closed, the set G  is the interval 

 ;)(sup),(inf 








∈∈

XEXE P
'P

P
'P PP

 

that is, in this case the hierarchical description of uncertain knowledge about the 
values of the variables iX  reduces to the description by means of imprecise probabilities (see 
Walley, 1991). 

Both the purely probabilistic and the purely possibilistic descriptions of uncertain 
knowledge about the values of the variables iX  appear as special cases of the probabilistic-

possibilistic hierarchical description. In fact, when the support 'P  of lik  is a singleton }{P , 

the description of uncertain knowledge is purely probabilistic: glik  is the indicator function of 

)}({ XEP . By contrast, when 'P  is a set of Dirac measures (that is, }:{ Ω∈⊆ ωδω
'P , with 

1=}{ωδω ), the description of uncertain knowledge is purely possibilistic: it corresponds to 

the possibility measure 1= −tLRLR'
  on Ω , where t  is the function ωδω   on 'P . In fact, 

glik  is the possibility distribution corresponding to the possibility measure 1−XLR'
  induced 

by X  on R ; in particular, the support of glik  is finite, since it is a subset of the image of X . 
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2.2 Updating 

The definition of likelihood function implies that when iii AX X⊆∈  is observed (for 

an },{1, ni ∈ ), the probabilistic level P  of the hierarchical model is updated to the set 

 { }0>}{ ,:)|  (= iiii
' AXPPAXP ∈∈∈⋅ PP  

of conditional probability measures )|  ( ii AXP ∈⋅  on Ω , while the possibilistic level 

lik  is updated to the likelihood function 'lik  on 'P  defined by 

 .}{)(sup=)(
=)|  (:

ii
'PiAiXPP

'' AXPPlikPlik ∈
∈⋅∈P

 

In fact, when interpreted as a function of P , the argument of the supremum is the new 
likelihood function on P , and 'lik  is the corresponding (profile) likelihood function on 'P . 
The definition of 'lik  on 'P  instead of P  can be slightly confusing (since likelihood functions 
are usually defined on the set P  of unconditional probability measures, as done at the 
beginning of the present section), but it is necessary if the hierarchical model has to describe 
the available uncertain knowledge about the values of the variables iX . 

In particular, when the description of uncertain knowledge is purely probabilistic, the 
support of lik  is a singleton }{P , and the updating corresponds to conditioning P , in 
accordance with the Bayesian approach. When the description of uncertain knowledge is 
purely possibilistic, the possibility measure 'LR  on Ω  is updated by multiplying the 
corresponding possibility distribution with the indicator function of }{ ii AX ∈  and then 
renormalizing it. Hence, in particular, the purely probabilistic and the purely possibilistic 
descriptions of uncertain knowledge are maintained when updating the hierarchical model. By 
contrast, in general the description by means of imprecise probabilities (corresponding to the 
case in which the support of lik  is convex and closed, and lik  is constant on it) is not 
maintained when updating the hierarchical model, because in general 'lik  is not constant on 
its support. In fact, the usual updating rule in the theory of imprecise probabilities is the 
regular extension (see Walley, 1991, Appendix J), which corresponds to the above updating 
rule without the term }{ ii AXP ∈  in the argument of the supremum (so that 'lik  too is 
constant on its support). 

In general, the hierarchical model with probabilistic level P  and possibilistic level lik  
can be described by the set }:)({= PM ∈PPPlik  of non-normalized probability measures on 

Ω . When iii AX X⊆∈  is observed (for an },{1, ni ∈ ), the set M  is updated to the set 

{ }MM ∈∈∩⋅ µµ :}){  (= ii
' AX  of non-normalized probability measures on Ω : the updating 

of each M∈µ  corresponds to the Bayesian updating without renormalization. In fact, if 'µ  is 
defined as the probability measure on Ω  obtained by normalizing the non-normalized 
probability measure µ  with 0>)(Ωµ  (that is, 'µµµ )(= Ω ), then the probabilistic level of 

the updated hierarchical model is 0}>)( ,:{= Ω∈ µµµ ''' MP , while the possibilistic level is 

the likelihood function 'lik  on 'P  defined by 
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 .)(sup=)(
=:

Ω
∈

µ
µµ 'P''

'' Plik
M

 

Since the updating }){  ( ii AX ∈∩⋅µµ  of the non-normalized probability measures 

on Ω  is the restriction of a linear function, if M  is the convex hull of a set 0M , then 'M  is the 

convex hull of the set }:}){  ({= 00 MM ∈∈∩⋅ µµ ii
' AX . That is, the set 0M  is updated in the 

same way as M , and can be considered as a simpler description of the hierarchical model. Of 
course, this simpler description is particularly useful when 0M  is finite. 

In particular, if M  is closed and convex, and its elements are normalized (that is, 
PM = ), then the hierarchical description of uncertain knowledge corresponds to the 

description by means of imprecise probabilities. The updating by means of regular extension 
consists in updating M  to the set ''' PM =  of the renormalized elements of 'M , but the 
renormalization of the elements of 'M  deletes the information about their relative ability to 
forecast the observation ii AX ∈ . For instance, if the probabilistic models in P  describe the 
opinions of a group of Bayesian experts, then the updating by regular extension corresponds 
to update the opinion of each expert without reconsidering her/his credibility, independently 
of how bad her/his forecasts were when compared to the forecasts of the other experts. This is 
not very reasonable, and in fact the updating by regular extension can lead to inconsistency, in 
the statistical sense of not tending to the correct conclusion, even when the amount of 
information provided by the data tends to infinity. The following adaptation of an example by 
Wilson (2001) shows that this does not only happen when the set P  is too wide. 

 

Example 1  Let {0,1}=== 1011 XX  , and let 

 }:{=0 ∆∈pPpP  

be a set of probability measures on 101{0,1}=Ω  such that 0.6][0.1,=∆  and for all 
∆∈p  

 ,=0}={ 2
1

1XPp  

and conditional on the realization of 1X  the random variables 1012 ,, XX   are 
independent with 

 pXXPXXP ipip =1}=|1={,=0}=|1={ 12
1

1  

for all ,101}{2,∈i . 

Consider the hierarchical model described by the set 00 = PM ; that is, the 

probabilistic level P  is the convex hull of 0P , and the possibilistic level is the likelihood 

function lik  on P  with constant value 1 . Since the set PM =  is closed and convex, the 
hierarchical description of uncertain knowledge corresponds to the description by means of 
imprecise probabilities. 

When the realizations 10110122 =...,,= xXxX  are observed, the updated hierarchical 
model is described by the set 
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 ( ){ }∆∈−+ − ppp xx' : )(1 =
1

100
2
1

0

101
2
1

0 ωω δδM  

of linear combinations of the Dirac measures 
0ω

δ  and 
1ω

δ , where ),,(= 10111
xxx ω  

for {0,1}1 ∈x , and 

 .=
101

2=
i

i
xx ∑  

Since '
0M  is convex, ''

0= MM , and 'P  consists of the convex combinations of 
0ω

δ  and 

1ω
δ  proportional to the linear combinations contained in '

0M . 

Figure 1 shows the graph on ]105 [0, 7−⋅  of the membership function of the fuzzy 
probability of 0=1X  according to the updated hierarchical model, when 20=x . Since 

1=1X  is compatible with the observed data, while 0=1X  is not, the fuzzy probability of 

0=1X  is extremely concentrated near 0 . In fact, any reasonable evaluation of the fuzzy 

probability of 0=1X  by a real number (such as the maximum likelihood estimate 7100.04 −⋅ , 

or the midpoint 7102.13 −⋅  of the α -cut with 0.01=α ) would be approximately 0 . 
 

 

Figure 1  Membership function of the fuzzy probability of 0=1X  when 20=x . 

 

However, the updating of PM =  by means of regular extension is ''' PM = ; that is, 
each element of ''

0= MM  is renormalized, without considering how improbable the observed 

data were for the corresponding probabilistic models in P . For the probability of 0=1X  this 
simply means forcing the crispness of the membership function, by making it constant equal to 
1 on its support: when 20=x , the resulting uncertain knowledge about the probability of 

0=1X  is described by the interval [0,1]]106.771 ,10[4.26 79 ≈⋅−⋅ −− . That is, despite the 
overwhelming information in favor of 1=1X  against 0=1X , almost complete ignorance 
about the probability of 0=1X  is obtained when updating the imprecise probabilities by 
means of regular extension.  
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3  Belief Networks 
An elegant and useful way of constructing a probabilistic model for the values of the 

variables iX  is through a Bayesian network (see Pearl, 1988; Jensen, 2001). This consists of a 

directed acyclic graph with nodes nXX ,,1  , such that to each node iX  is associated a 

stochastic kernel assigning a probability measure ( ))(|  ωii paP ⋅  on iX  to each possible vector 

)(ωipa  of values for the parents of iX  (that is, the nodes from which start the edges pointing 

to iX ). For each },{1, ni ∈ , the function ipa  on Ω  assigns to each ),,(= 1 nxx ω  the 

vector ),,(
1 mjj xx   of the values of the parents 

mjj XX ,,
1
  of iX ; when iX  is a root (that is, 

it has no parents), ipa  assigns the empty set to all Ω∈ω , and the stochastic kernel associated 

to iX  reduces to a probability measure ( )∅⋅ |  iP  on iX . The probability measure P  on Ω  
associated to the Bayesian network is defined by 

 ( ))(|}{=}{
1=

ωω iii

n

i
paxPP ∏  

for all Ω∈),,(= 1 nxx ω . 

The probability measures on Ω  compatible with a directed acyclic graph with nodes 

nXX ,,1   are those that can be constructed as above by a suitable choice of the stochastic 
kernels. A key property of Bayesian networks is that the graph encodes conditional 
independencies between the variables nXX ,,1  : these conditional independencies can be 
determined by the graphical criterion of d-separation (see Pearl, 1988). 

In the theory of imprecise probabilities, Bayesian networks have been generalized to 
credal networks by associating to each node iX  a closed convex set iP  of stochastic kernels, 

instead of a single stochastic kernel iP  (see Cozman, 2000, 2005). There are several ways of 
associating to a credal network a closed convex set P  of probability measures on Ω ; the 
simplest one is to define P  as the convex hull of the set 0P  of all probability measures on Ω  

that can be constructed as above by all possible choices of the stochastic kernels iiP P∈ . 

Hence, all elements of 0P  are compatible with the directed acyclic graph considered, but in 
general not all elements of P  are compatible with it. 

When some data are observed, the imprecise probabilities described by P  are usually 
updated by means of regular extension; but the results of Section 2.2 show that regular 
extension can lead to unsatisfactory conclusions. A simple solution consists in considering P  
as the description PM =  of a hierarchical model (the one with P  as probabilistic level and the 
likelihood function lik  on P  with constant value 1 as possibilistic level), and updating it to 
the set 'M  of non-normalized probability measures on Ω , as described in Section 2.2. In 
general, the resulting conclusions are then fuzzy expectations and fuzzy probabilities, but if 
necessary these fuzzy numbers can be evaluated by intervals, for instance by considering their 
α -cuts (see also Moral, 1992; Cano and Moral, 1996). 

Credal networks can be generalized by allowing the use of fuzzy probabilities also 
before the updating. In the resulting probabilistic-possibilistic hierarchical networks, to each 
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node iX  is associated a fuzzy stochastic kernel; that is, a fuzzy subset of the set of all possible 

stochastic kernels iP , with membership function iπ . Let 0P  be the set of all probability 

measures on Ω  compatible with the directed acyclic graph considered: a fuzzy subset of 0P  
can be constructed on the basis of the hierarchical network by defining the degree of 

membership )(0 Plik  of 0P∈P  as the supremum of )(
1= ii

n

i
Pπ∏  over all choices of the 

stochastic kernels iP  such that P  is associated to the corresponding Bayesian network. Since 

the membership functions iπ  are interpreted as proportional to likelihood functions, the use of 
their product is implied by the implicit assumption that these likelihood functions have been 
induced by independent (hypothetical) observations. Under an analogous assumption, the 
membership function iπ  of the fuzzy stochastic kernel associated to a node iX  can be defined 

as the product of the membership functions of the fuzzy probability measures on iX  

corresponding to each possible vector of values for the parents of iX . 

The set }:)({= 000 PM ∈PPPlik  of non-normalized probability measures on Ω  

describes the hierarchical model with 0P  as probabilistic level and the function 0lik  on 0P  as 
possibilistic level. The hierarchical model associated to the hierarchical network can be 
defined as the one described by 0M  or as the one described by the convex hull M  of 0M . Let 

P  and lik  be the two levels of the probabilistic-possibilistic hierarchical model described by 
M . As for credal networks, in general not all elements of the support of lik  are compatible 
with the directed acyclic graph considered; in fact, credal networks correspond to the special 
case in which all membership functions iπ  are crisp with closed convex support. 

When some data are observed, the hierarchical model described by 0M  or M  can be 

updated to the one described by '
0M  or 'M  (that is, the convex hull of '

0M ), as considered in 

Section 2.2. This is particularly simple when 0M  is finite, or when M  is the convex hull of 
another finite set of non-normalized probability measures on Ω . This is the case in particular 
when all fuzzy probability measures appearing in the hierarchical network can be described 
by finite sets of non-normalized probability measures, as in the following simple example. 

 

Example 2  Let {0,1}=== 321 XXX , and consider the Bayesian network consisting 

of the directed acyclic graph 321 XXX →←  and of the stochastic kernels 321 ,, PPP  defined 
by 

 ( ) ( ) ( ) ( ) ( ) .0.9=(1)|{0}=(0)|{1}=(1)|{1}=(0)|{0}=|{0} 33112 PPPPP ∅  

Let P  be the probability measure on 3{0,1}=Ω  associated to the Bayesian network: 

 .0.5=1}=|1={and,0.8900}=|1={,0.82=1}={ 13133 XXPXXPXP ≈  

Since 0.82=0}={ 1XP , the observation 0=1X  is not surprising, and does not have 
much influence on the probability of 1=3X . By contrast, the observation 1=1X  is more 
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surprising, and has a larger influence on the probability of 1=3X ; in fact, the probability 

0.5  of 1=3X  conditional on 1=1X  can be considered as arising from conflicting evidence. 

Consider the hierarchical network obtained by modifying in the following way each 
one of the 5  probability measures on {0,1} that define the above Bayesian network: assume 
that any probability measure on {0,1} is at least 0.01  times as plausible as the one used in 
the Bayesian network, and take the convex hull of the corresponding set of non-normalized 
probability measures on {0,1}. When building each one of these 5  convex hulls, it suffices to 
consider the two extreme non-normalized probability measures 00.01δ  and 10.01δ  on {0,1}, 
besides the probability measure used in the Bayesian network; for example, the fuzzy 
probability measure associated to the node 2X  is described by the convex hull of the set 

}0.01 ,0.10.9 ,{0.01 1100 δδδδ +  of non-normalized probability measures on {0,1}. 

When the set 0M  of non-normalized probability measures on Ω  is defined as above, 

its convex hull M  is the convex hull of the set of the 99  non-normalized probability measures 
on Ω  resulting from all possible combinations of the elements of the 5  sets of 3  non-
normalized probability measures on {0,1}  that generate the 5  fuzzy probability measures 
defining the hierarchical network (because of the two extreme non-normalized probability 
measures 00.01δ  and 10.01δ  associated to the node 2X , there are only 99=323 24 ⋅+  

possible combinations, and not 243=35 ). As considered in Section 2.2, when data are 
observed, the hierarchical model described by M  is updated to the hierarchical model 
described by the convex hull 'M  of the set obtained by updating each one of the 99  non-
normalized probability measures on Ω . 

 

 
 

Figure 2  Membership functions of the fuzzy probability of 1=3X : unconditional (dotted 

line), conditional on 0=1X  (dashed line), and conditional on 1=1X  (solid line). 
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Note that every probability measure 'P  on Ω  compatible with the graph considered 
has positive degree of membership in the fuzzy probability measure on Ω  described by M . 
When data are observed, each 'P  is updated and its degree of membership is modified in 
accordance with the relative ability of 'P  to forecast the observed data. For example, Figure 
2 shows the graphs of the membership functions of the fuzzy probability of 1=3X  according 
to the hierarchical model described by M  (dotted line) and to the updated hierarchical model 
described by 'M , when 0=1X  is observed (dashed line), or when 1=1X  is observed (solid 
line). The maximum likelihood estimates are the probabilities resulting from the Bayesian 
network, while the α -cuts with 0.1=α  are 0.828] [0.746, , 0.899] [0.809, , and 0.671] [0.311, , 
respectively. That is, the possibilistic uncertainty about the value of the probability of 1=3X  

remains more or less constant when the unsurprising realization 0=1X  is observed, while it 
clearly increases when the more surprising realization 1=1X  is observed: the possibilistic 
uncertainty is larger for probability values arising from conflicting evidence. 

 

3.1  Irrelevance and D-separation 

Let },,{,, 1 nXXZYX ⊆  be three disjoint sets of variables. Y  is said to be irrelevant 
to X  given Z  (with respect to a probabilistic-possibilistic hierarchical model for the values 
of the variables iX ) if the fuzzy probability distribution for the variables in X  conditional on 
any realization of the variables in Z  does not change when also something about the variables 
in Y  is observed. Note that in general the conditional independence of X  and Y  given Z  
under each probabilistic model in the probabilistic level of the hierarchical model does not 
suffice for the irrelevance of Y  to X  given Z , because the possibilistic level can be 
influenced by the observations about the variables in Y . However, when the hierarchical 
model is constructed through a hierarchical network, the following result holds. 

Theorem 3  If X  and Y  are d-separated by Z  in the directed acyclic graph of a 
probabilistic-possibilistic hierarchical network, then Y  is irrelevant to X  given Z , with 
respect to the hierarchical model associated to the hierarchical network.  

The theorem can be proved as follows. Let 'Y  be the set of all variables ZXX i ∪∉  

such that X  and }{ iX  are d-separated by Z  in the graph considered, and let 'X  be the 

complement of ZY ' ∪  in },,{ 1 nXX  . Then let 1Z  be the set of all variables in Z  that have 

no parents in 'Y , and let 2Z  be the complement of 1Z  in Z ; the sets 21,,, ZZYX ''  build a 

partition of },,{ 1 nXX  . The definition of d-separation implies that for each probability 
measure on Ω  associated to a Bayesian network on the graph considered, the value of the 
probability of the observed realization of the variables in Z  factorizes in two parts: one 
depending only on the stochastic kernels jP  for the variables 1ZXX '

j ∪∈ , and the other 

depending only on the stochastic kernels kP  for the variables 2ZYX '
k ∪∈ . Moreover, the 

value of the probability of an observation about the variables in X  conditional on the 
observed realization of the variables in Z  depends only on the stochastic kernels jP  for the 
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variables 1ZXX '
j ∪∈ , while the value of the probability of an observation about the 

variables in Y  conditional on the observed realization of the variables in Z  depends only on 
the stochastic kernels kP  for the variables 2ZYX '

k ∪∈ . 

Consider the hierarchical model described by the set 0M  of non-normalized 
probability measures on Ω  defined as above on the basis of the hierarchical network. The 
degree of membership of a probability distribution for the variables in X  conditional on the 
observed realization of the variables in Z  is proportional to the supremum (over all choices of 

the stochastic kernels iP  leading to this probability distribution) of the product of )(
1= ii

n

i
Pπ∏  

with the corresponding value of the probability of the observed realization of the variables in 
Z . Hence, the argument of the supremum factorizes in two parts as above, and the part 
depending only on the stochastic kernels kP  for the variables 2ZYX '

k ∪∈  disappears in the 
proportionality constant. Since X  and Y  are conditionally independent given Z  under each 
probabilistic model compatible with the graph considered, the same supremum is obtained 
when considering also the observation about the variables in Y : the additional factor in the 
argument depends only on the stochastic kernels kP  for the variables 2ZYX '

k ∪∈ , and 
therefore it disappears in the proportionality constant too. This result for the hierarchical 
model described by 0M  implies the same result for the hierarchical model described by the 

convex hull M  of 0M . 

 

3.2  Probabilistic-Possibilistic Belief Networks 

Any probabilistic model for the values of the variables nXX ,,1   can be constructed 

through a Bayesian network with nodes nXX ,,1  . By contrast, not all closed convex sets of 

probability measures on Ω  can be constructed through credal networks with nodes nXX ,,1  , 
and not all hierarchical models on Ω  can be constructed through hierarchical networks with 
nodes nXX ,,1  . For instance, the hierarchical model of Example 1 cannot be constructed 

through a hierarchical network with nodes 1011 ,, XX  . 

However, any hierarchical model for the values of the variables nXX ,,1   can be 

constructed through a hierarchical network with nodes 11 ,, +nXX  : it suffices to add a root 

1+nX , which in general is a parent of all other nodes, and which indexes the probabilistic 

models in the probabilistic level of the hierarchical model. Hence, in general 1+nX  is infinite, 

but this is unimportant, because the uncertain knowledge about the value of 1+nX  is purely 
possibilistic (with possibility distribution corresponding to the possibilistic level of the 
hierarchical model). By contrast, the uncertain knowledge about the value of any other node 

iX , given the values of its parents, is purely probabilistic. For instance, the hierarchical 
model of Example 1 can be constructed through a hierarchical network with nodes 

1021 ,, XX  , where ∆=102X , the nodes 1X  and 102X  are roots, and they are the only two 

parents of all other nodes. The uncertain knowledge about the value p  of the variable 102X  is 
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purely possibilistic (with possibility distribution constant equal to 1  on ∆ ), while the 
uncertain knowledge about the value of the variable 1X  is purely probabilistic, and the same 

is true for the uncertain knowledge about the values of the variables 1012 ,, XX  , conditional 

on the values of 1X  and 102X . 

In general, every hierarchical network with nodes nXX ,,1   can be easily 
transformed into a larger hierarchical network which describes the same uncertain knowledge 
about the values of the variables nXX ,,1  , but such that the uncertain knowledge about the 
value of each node, given the values of its parents, is either purely probabilistic or purely 
possibilistic. In fact, when the uncertain knowledge about the value of a node iX , given the 
values of its parents, is not purely probabilistic or purely possibilistic, it suffices to add a root 
which is a parent of iX  only, and which indexes the possible stochastic kernels iP . The 
uncertain knowledge about the value of this additional root is purely possibilistic (with 
possibility distribution corresponding to iπ ), while the uncertain knowledge about the value 

of the node iX , given the values of its parents, is now purely probabilistic. 

 

4 Conclusion 
The use of fuzzy probabilities to describe the uncertain knowledge about the values of 

the nodes of belief networks seems very promising. The description of fuzzy probability 
measures as convex hulls of finite sets of non-normalized probability measures and the 
exploitation of the criterion of d-separation allow the use of fuzzy probabilities in those belief 
networks that can be afforded by imprecise probabilities. The resulting probabilistic-
possibilistic hierarchical models can also be interpreted as a simple generalization of Bayesian 
networks, in which the uncertainty about the values of some nodes can be possibilistic instead 
of probabilistic. 
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