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Abstract Since coarse(ned) data naturally induce set-valued estimators, an-
alysts often assume coarsening at random (CAR) to force them to be single-
valued. Using the PASS data as an example, we re-illustrate the impossibil-
ity to test CAR and contrast it to another type of uninformative coarsening
called subgroup independence (SI). It turns out that SI is testable.
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1 The problem of testing coarsening mechanisms
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Traditional statistical methods dealing with missing data (e.g. EM algorithm,
imputation techniques) require identifiability of parameters, which frequently
tempts analysts to make the missing at random (MAR) assumption ([7]) sim-
ply for pragmatic reasons without justifications in substance (e.g. [5]). Since
MAR is not testable (e.g. [8]), this way to proceed is especially alarming.
Looking at the problem in a more general way, incomplete observations may
be included not only in the sense of missing, but also coarse(ned) data. In
this way, additionally to fully observed and unobserved, also partially ob-
served values are considered.1 In the context of coarse data, the coarsening

Julia Plass · Georg Schollmeyer · Thomas Augustin

Department of Statistics, LMU Munich

e-mail: {julia.plass,georg.schollmeyer,augustin}@stat.uni-muenchen.de

Marco E. G. V. Cattaneo
Department of Mathematics, University of Hull

e-mail: m.cattaneo@hull.ac.uk

1 When dealing with coarse data, it is important to distinguish between epistemic data

imprecision, considered here, and ontic data imprecision (cf. [2]).

1

http://dx.doi.org/10.1007/978-3-319-42972-4_51


2 J. Plass, M. Cattaneo, G. Schollmeyer, and T. Augustin

at random (CAR) assumption (e.g. [4]) is the analogue of MAR. Although
the impossibility of testing CAR is already known from literature, providing
an intuitive insight into this point will be a first goal of this paper. Apart from
CAR, we focus on another, in a sense dual, assumption that we called sub-
group independence (SI) in [11]. In our categorical setting (cf. Section 2), SI
not only makes parameters identifiable, but is also testable as demonstrated
here. Thus, we elaborate the substantial difference in the testability of CAR
and SI and start with illustrating both assumptions by a running example
based on the PASS data in Section 2 ([14]). In Section 3 we sketch the crucial
argument of the estimation and show how the generally set-valued estima-
tors are refined by implying CAR or SI. Testability of both assumptions is
discussed in Section 4, where a likelihood-ratio test is suggested for SI.

2 Coarsening models: CAR and SI

Throughout this paper, we refer to the case of a coarse categorical response
variable Y and one precisely observed binary covariate X. The results may be
easily transferred to cases with more than one arbitrary categorical covariates
by using dummy variables and conditioning on the then emerged subgroups.
For sake of conciseness, the example refers to the case of a binary Y , where
coarsening corresponds to missingness, but all results are applicable in a
general categorical setting.

We approach the problem of coarse data in our setting by distinguishing
between a latent and an observed world: A random sample of a categorical
response variable Y1, . . . , Yn with realizations y1, . . . , yn in sample space ΩY

is part of the latent world. The basic goal consists of estimating the indi-
vidual probabilities πxy = P (Yi = y|Xi = x) given the precise values of a
categorical covariate X with sample space ΩX . Unfavorably, the values of Y
can only be observed partially and thus the realizations y1, . . . , yn of a sam-
ple Y1, . . . ,Yn of a random object Y within sample space ΩY = P(ΩY ) \ ∅
constitute the observed world, with yi ∋ yi.

2 A connection between both
worlds, and thus between πxy and pxy = P (Yi = y|Xi = x), is estab-
lished via an observation model governed by the coarsening parameters
qy|xy = P (Yi = y|Xi = x, Yi = y) with y ∈ ΩY , y ∈ ΩY , and x ∈ ΩX .
As the dimension of these coarsening parameters increases considerably with
|ΩX | and |ΩY |, for reasons of conciseness, we mainly confine ourselves to
the discussion of the example with ΩX = {0, 1}, ΩY = {a, b}, and thus
ΩY = {{a}, {b}, {a, b}}, where “{a, b}” denotes the only coarse observation,
which corresponds to a missing one in this case. Assuming only error-freeness,
we generally refrain from making strict assumptions on qy|xy. In contrast to
this, under CAR and SI the coarsening parameters are strongly restricted.

2 This error-freeness implies that Y is an almost sure selector of Y (in the sense of e.g. [9]).
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Heitjan and Rubin ([6]) consider maximum likelihood estimation in coarse
data situations by deriving assumptions simplifying the likelihood. These
assumptions – CAR and distinct parameters – make the coarsening ignor-
able (e.g. [7]). The CAR assumption requires constant coarsening parameters
qy|xy, regardless which true value y is underlying subject to the condition that
it matches with the fixed observed value y. The strong limitation of this as-
sumption is illustrated by the running example generally introduced in the
following box.

Running example (Table 1 shows the summary of the data)

• German Panel Study “Labour Market and Social Security” ([14])
(PASS, wave 5, 2011)

• Y : income < 1000e (a) or ≥ 1000e (b) ⇒ y ∈ {a, b}
• Y: some respondents give no suitable answer ({a, b}: y = a or y = b)

⇒ y ∈ {{a}, {b}, {a, b}} ⇒ coarse answer {a, b} is missing observation
• X: receipt of Unemployment Benefit II (UBII), x ∈ {0 (no), 1 (yes)}

Table 1 Data of the PASS example

UBII Income observed counts total counts

0 {a} n0{a} = 38 n0 = 518

{b} n0{b} = 385

{a, b} n0{a,b} = 95

1 {a} n1{a} = 36 n1 = 87

{b} n1{b} = 42

{a, b} n1{a,b} = 9

Referring to the example, under CAR, which coincides here with MAR,3 the
probability of giving no suitable answer is taken to be independent of the
true income category in both subgroups split by UBII, i.e.

q{a,b}|0a = q{a,b}|0b and q{a,b}|1a = q{a,b}|1b.

Generally, CAR could be quite problematic in this context, as practical expe-
riences show that reporting missing or coarsened answers is notably common
in specific income groups (e.g. [10]).

If the data are missing not at random (MNAR) ([7]), commonly the missing-
ness process is modelled by including parametric assumptions (e.g. [7], [6])

3 The PASS data provide income in different levels of coarseness induced by follow-up
questions for non-respondents. For sake of simplicity, we consider only the income question

explained in the box, but the study provides also coarse ordinal data in the general sense.
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or a cautious procedure is chosen ending up in set-valued estimators (cf. e.g.
[3], [17], [11]). For the categorical case, there is a special case of MNAR, in
which single-valued estimators are obtained without parametric assumptions.
For motivating this case, one can further differentiate MNAR, distinguishing
between the situation where missingness depends on both the values of the
response Y and the covariate X and the situation where it depends on the
values of Y only. Referring to the related coarsening case, the latter case
corresponds to SI investigated in [11]. This independence from the covariate
value shows, beside CAR, an alternative kind of uninformative coarsening.
Again, one should use this assumption cautiously: Under SI, giving a coarse
answer is taken to be independent of the UBII given the value of Y , i.e.

q{a,b}|0a = q{a,b}|1a and q{a,b}|0b = q{a,b}|1b.

Mostly, this turns out to be doubtful, as the receipt of the UBII influences
the income, which typically has an impact on the non-response to the income
question.

3 Estimation: General approach, CAR and SI

This section recalls some important aspects of an approach developed in [11]
by sketching the basic idea of the therein considered cautious, likelihood-
based estimation technique. The resulting estimators are not only given for
the general case, but also when the assumptions in focus are included.

To estimate (πxy)x∈ΩX ,y∈ΩY
of the latent world, basically three steps are ac-

complished. Firstly, we determine the maximum likelihood estimator (MLE)
(p̂xy)x∈ΩX ,y∈ΩY in the observed world. Since the counts (nxy)x∈ΩX ,y∈ΩY are
multinomially distributed, the unique MLE is obtained by the relative fre-
quencies of the respective categories, coarse categories treated as own cate-
gories. Secondly, we connect the parameters of both worlds by a mapping Φ.
For the binary case with x ∈ {0, 1} one obtains Φ : [0, 1]6 → [0, 1]4 with

Φ

 πxa

q{a,b}|xa
q{a,b}|xb

=

(
πxa · (1− q{a,b}|xa)

(1− πxa) · (1− q{a,b}|xb)

)
=

(
px{a}
px{b}

)
. (1)

Thirdly, by the invariance of the likelihood under parameter transformations,
we may incorporate the parametrization in terms of πxy and qy|xy into the
likelihood of the observed world. Since the mapping Φ is generally not injec-
tive, we obtain set-valued estimators π̂xy and q̂y|xy, namely

π̂xa ∈
[
nx{a}

nx
,
nx{a} + nx{a,b}

nx

]
, q̂{a,b}|xy ∈

[
0,

nx{a,b}

nx{y} + nx{a,b}

]
, (2)
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with x ∈ {0, 1} and y ∈ {a, b}. Points in these sets are constrained by the
relationships in Φ. In the spirit of the methodology of partial identification
([8]), these sets may be refined by including assumptions about the coarsening
justified from the application standpoint. Very strict assumptions may induce
point identified parameters, as estimation under CAR or SI in the categorical
case shows.4

Including CAR, i.e. restricting the set of possible coarsening mechanisms to
q{a,b}|xa = q{a,b}|xb with x ∈ {0, 1}, induces an injective mapping Φ leading
to the point-valued estimators

π̂CAR
xa =

nx{a}

nx{a} + nx{b}
, q̂CAR

{a,b}|xa = q̂CAR
{a,b}|xb =

nx{a,b}

nx
. (3)

Thus, under this type of uninformative coarsening, π̂xa corresponds here to
the proportion of {a}-observations in subgroup x ignoring all coarse values
and q̂{a,b}|xa = q̂{a,b}|xb is the proportion of observed {a, b} in subgroup x.
Under rather weak regularity conditions, namely π0a ̸= π1a, π0a /∈ {0, 1}, and
π1a /∈ {0, 1} for x ∈ {0, 1}, also under SI the mapping Φ becomes injective
(cf. [12]) in our categorical setting. Hence, point-valued estimators

π̂SI
xa =

nx{a}

nx

n0 n1{b} − n0{b} n1

n0{a} n1{b} − n0{b} n1{a}
,

q̂SI
{a,b}|xa =

n0{a,b} n1{b} − n0{b} n1{a,b}

n0 n1{b} − n0{b} n1
,

q̂SI
{a,b}|xb =

n0{a,b} n1{a} − n0{a} n1{a,b}

n0 n1{a} − n0{a} n1

(4)

are obtained, provided they are well-defined and inside [0, 1].

4 Testing

Due to the substantial bias of π̂xy if CAR or SI are wrongly assumed (cf.
e.g. [12]), testing these assumptions is of particular interest. Although it is
already established that it is not possible to test whether the CAR condition
holds (e.g. [8]), it may be insightful, in particular in the light of Section 4.2,
to address this impossibility in the context of the example.

4 Identifiability may not only be obtained by assumptions on the coarsening: e.g. for discrete
graphical models with one hidden node, conditions based on the associated concentration

graph are used in [13].
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4.1 Testing of CAR

A closer consideration of (3) already indicates that CAR can never be re-
jected without including additional assumptions about the coarsening. This
point is illustrated in Fig. 1 by showing the interaction between points in the
intervals in (2). Thus, this uninformative coarsening – in the sense that all
coarse observations are ignored – is always a possible scenario included in the
general set-valued estimators in (2).
Exemplary for subgroup 0, under CAR we obtain π̂CAR

0a = 0.09, q̂CAR
{a,b}|0a =

q̂CAR
{a,b}|0b = 0.18, which may not be excluded from the general estimators

π̂0a ∈ [0.07, 0.26], q̂{a,b}|0a ∈ [0, 0.71] and q̂{a,b}|0b ∈ [0, 0.20] unless further
assumptions as e.g. “respondents from the high income group tend to give
coarse answers more likely” are justified.
Nevertheless, there are several approaches that show how testability of CAR
is achieved by distributional assumptions (e.g. [4]), e.g. the naive Bayes as-
sumption ([5]), or by the inclusion of instrumental variables (cf. [1]).

π̂xa =
nx{a} + nx{a,b}

nx

π̂CAR
xa =

nx{a}
nx{a} + nx{b}π̂xa =

nx{a}
nx

q̂{a,b}|xa =
nx{a,b}

nx{a,b} + nx{a}

q̂{a,b}|xb = 0q̂{a,b}|xa = 0

q̂{a,b}|xb =
nx{a,b}

nx{a,b} + nx{b}

q̂CAR
{a,b}|xb =

nx{a,b}
nx

= q̂CAR
{a,b}|xa

CAR

Fig. 1 Since the relationships expressed via Φ in (1) have to be met, only spe-

cific points from the set-valued estimators in (2) are combinable, ranging from

(π̂xa, q̂{a,b}|xa, q̂{a,b}|xb) to (π̂xa, q̂{a,b}|xa, q̂{a,b}|xb) with the CAR case always in-

cluded.

4.2 Testing of SI

Applying the estimators in (4) to the example, one obtains π̂SI
0a = 0.42,

π̂SI
1a = 0.40, q̂SI

{a,b}|0a = q̂SI
{a,b}|1a = −0.04, and q̂SI

{a,b}|0b = q̂SI
{a,b}|1b = 0.20

partly outside [0, 1]. This shows that there are data situations that might
hint to (partial) incompatibility with SI. In general for the categorical case,
a statistical test for the following hypotheses can be constructed:

H0 : qy|xy = qy|x′y for all y ∈ ΩY , x, x
′ ∈ ΩX , y ∈ ΩY ,

H1 : qy|xy ̸= qy|x′y for some y ∈ ΩY , x, x
′ ∈ ΩX , y ∈ ΩY .
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As test statistic we can use the likelihood ratio (e.g. [16])

Λ(y1, . . . , yn, x1, . . . , xn) =
supH0

L(ϑ||y1, . . . , yn, x1, . . . , xn)

supH0∪H1
L(ϑ||y1, . . . , yn, x1, . . . , xn)

,

here with ϑ = (π0a, π1a, q{a,b}|0a, q{a,b}|1a, q{a,b}|0b, q{a,b}|1b)
T .5 In fact, recent

simulation studies corroborate the decrease of Λ with deviation from SI (cf.
[12]). The sensitivity of Λ with regard to the test considered here is also il-
lustrated informally in Fig. 2 by depicting Φ in (1) for two data situations,
where only the second one gives evidence against SI. The gray line symbol-
izes all arguments satisfying SI, while the bold line represents all arguments
maximizing the likelihood (i.e. all values in (2) compatible with each other).
The intersection of both lines represents the values in (4), and if it is included
in the domain of Φ (cf. first case of Fig. 2), the same maximal value of the
likelihood is obtained regardless of including SI or not, resulting in Λ = 1.
An intersection outside the domain (cf. second case of Fig. 2) induces a lower
value of the likelihood under SI, also reflected in Λ < 1. For the example one
obtains Λ ≈ 0.93 and thus there is a slight evidence against SI based on a
direct interpretation of the likelihood ratio, while setting a general decision
rule depending on a significance level α remains as an open problem.

 

 

SI

Λ < 1

 

p̂

Φ−1(p̂)

[0, 1]6 [0, 1]4

SI

Φ−1(p̂)

 

Λ = 1

 

p̂

Φ : [0, 1]6 [0, 1]4Φ :

1 2

Fig. 2 The impact on Λ of two substantially differing data situations is illustrated.

5 Conclusion

We focused on the testability of CAR and SI by investigating the compat-
ibility of the estimators (3) and (4) with the observed data. While CAR is
generally not testable, SI may be tested and a “pure likelihood” approach
was proposed. To obtain a statistical test for SI at a fixed level of significance
α, we want to determine the (asymptotic) distribution of −2 logΛ under H0

5 While the denominator of Λ can be obtained using any values in (2) compatible with each
other, the numerator must in general be calculated by numerical optimization. Alternatives

to this statistic include a test decision based on uncertainty regions ([15]).
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next, which is expected to deviate from the χ2-distribution of the standard
case. Furthermore, a generalized version of SI – in the sense of assuming
particular coarsening parameters to be known multiples of each other – will
allow for a more flexible application of this hypothesis test.
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