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Abstract Likelihood-based Imprecise Regression (LIR) is a recently intro-
duced approach to regression with imprecise data. Here we consider a robust
regression method derived from the general LIR approach and we establish
an exact algorithm to determine the set-valued result of the LIR analysis in
the special case of simple linear regression with interval data.
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1 Introduction
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In [3], Likelihood-based Imprecise Regression (LIR) was introduced as a very
general theoretical framework for regression analysis with imprecise data.
Within the context of LIR, the term imprecise data refers to imprecisely
observed quantities. This means that one is actually interested in analyzing
the relation between precise variables, but the available data provide only the
partial information that the values each lie in some subset of the observation
space. In the general formulation of LIR, the imprecise observations can be
arbitrary subsets of the observation space, including as special cases actually
precise data (where the subset is a singleton) and missing data (where the
subset is the entire observation space).

The aim of a LIR analysis is to identify plausible descriptions of the rela-
tion between the unobserved precise quantities on the basis of the imprecise
observations. This is achieved by applying a general methodology for likeli-
hood inference with imprecise data to the regression problem with imprecise
data as a problem of statistical inference. The mathematical details of the
LIR approach are set out in [3].
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In this paper, we deal with the implementation of the robust regression
method derived from the general LIR approach in [3]. There, a grid search
was proposed as a first implementation, which served to obtain the (approx-
imate) result of the LIR analysis for a quadratic regression problem with
interval data. Here, we consider the special case of simple linear regression
with interval data and we derive an exact algorithm to determine the set-
valued result of the LIR analysis in this particular situation. In the following
section, we review the relevant technical details of the robust LIR method,
before we establish the exact algorithm in Section 3.

2 LIR in the case of simple linear regression with
interval data

In the case of simple linear regression, the relation between two real-valued
variables, X and Y , shall be described by means of a linear function.
Thus, the set of regression functions considered here can be written as
F = {fa,b : (a, b) ∈ R2} with fa,b : R → R, x 7→ a + b x. Furthermore,
we here focus on the particular case of interval data, where the imprecise
data V ∗

i := [Xi, Xi] × [Y i, Y i], i = 1, . . . , n are (possibly unbounded) rect-
angles. To keep the notation simple, throughout the paper, we write [I, I] for
the set of all real numbers z such that I ≤ z ≤ I. This is not the standard
notation if I = −∞ or I = +∞. Figure 1 gives an example of such a data
set containing 17 observations with varying amounts of imprecision.

The robust regression method we consider in this paper is based on a
fully nonparametric probability model. It is only assumed that the n ran-
dom objects (Vi, V

∗
i ), i = 1, . . . , n (where Vi := (Xi, Yi) are the unob-

served precise values) are independent and identically distributed, and that

Fig. 1 Example data set
containing 17 observations

with varying amounts of

imprecision: there is one
actually precisely observed

data point V ∗
i = [1, 1] ×

[1, 1] = {(1, 1)}, there are
two line segments (one

of which is unbounded

towards +∞ in the X
dimension), and, finally,
there are 14 rectangles of
different sizes and shapes
(one of which is unbounded

towards −∞ in the Y
dimension).
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P (Vi ∈ V ∗
i ) ≥ 1− ε, for some ε ∈ [0, 1]. If ε > 0, this assumption implies that

an imprecise observation may not cover the precise value with probability
at most ε. Apart from this assumption, there is no restriction on the set of
possible distributions of the data.

The relation between X and Y shall be described by a linear function.
Which linear function is a suitable description of the relation when no par-
ticular structure of the joint distribution of X and Y is assumed? The basic
idea behind the robust LIR method is that a possible description f can be
evaluated by the p-quantile, p ∈ ]0, 1[, of the distribution of the corresponding
(absolute) residual |Y −f(X)|. The closer to zero the p-quantile is, the better
the associated function describes the relation between X and Y . Therefore,
the linear function for which the p-quantile of the residual’s distribution is
minimal can be considered as the best description of the relation of interest.
This linear function can be characterized geometrically as the central line
of the thinnest band of the form f ± q, q ≥ 0, that contains (X,Y ) with
probability at least p.

This idea is very similar to the idea behind the robust regression method
of least quantile of squares (or absolute deviations) regression, introduced in
[5] as a generalization of the method of least median of squares regression
(corresponding to the choice p = 0.5). Therefore, the LIR method can be
seen as a generalization of these robust regression methods to the setting
with imprecise data, where not only the optimal line is estimated, but a
whole set of plausible descriptions is idenified.

To see how the robust LIR method works in detail, consider V ∗
1 =

A1, . . . , V
∗
n = An as (nonempty) realizations of the imprecise data. Apply-

ing the general methodology for likelihood inference with imprecise data on
which the LIR method is based, likelihood-based confidence regions for the
p-quantile of the distribution of the precise residuals Rf,i := |Yi−f(Xi)|, i =
1, . . . , n, are determined for each considered regression function f ∈ F . The
confidence regions are obtained by cutting the (normalized) profile likelihood
function for the p-quantile induced by the imprecise data at some cutoff
point β ∈ ]0, 1[. The confidence regions cover the values of the p-quantiles
corresponding to all probability distributions that give at least a certain prob-
ability to the observations, i.e. whose likelihood exceeds the threshold β.

To obtain the confidence regions, for each f ∈ F lower and upper (abso-
lute) residuals are defined as follows

rf,i = min
(x,y)∈Ai

|y − f(x)| and rf,i = sup
(x,y)∈Ai

|y − f(x)|, i = 1, . . . , n.

Let 0 =: rf,(0) ≤ rf,(1) ≤ . . . ≤ rf,(n) ≤ rf,(n+1) := +∞ be the ordered
lower residuals and 0 =: rf,(0) ≤ rf,(1) ≤ . . . ≤ rf,(n) ≤ rf,(n+1) := +∞
be the ordered upper residuals. Furthermore, define i = max(⌈(p− ε)n⌉ , 0)
and i = min(⌊(p+ ε)n⌋ , n) + 1. According to Corollary 1 of [3] the profile
likelihood function for the p-quantile of the distribution of the residuals cor-
responding to some function f ∈ F is a piecewise constant function whose
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points of discontinuity are given by rf,(0), . . . , rf,(i), rf,(i), . . . , rf,(n+1). To ob-

tain the confidence region Cf it thus suffices to identify the (k+1)-th ordered
lower residual and the k-th ordered upper residual, which correspond to the
points where the profile likelihood function jumps above and below the cho-
sen threshold β, provided the condition (max{p, 1− p}+ ε)n ≤ β holds. The
values of k and k are determined on the basis of the explicit formula for the
profile likelihood function given in [3]. They depend on n, on the choice of p
and β, as well as on ε, which is part of the assumed probability model.

Thus, if (max{p, 1 − p} + ε)n ≤ β is fulfilled, for each function f ∈ F
the likelihood-based confidence region is the interval Cf := [rf,(k+1), rf,(k)]

(see Corollary 2 of [3]). In order to find the best description of the relation
between X and Y it is possible to follow a minimax approach and minimize
the upper endpoint of the confidence interval over all considered regression
functions. When there is a unique f ∈ F that minimizes sup Cf , it is optimal
according to the Likelihood-based Region Minimax (LRM) criterion (see [1])
and therefore called fLRM . If we consider the closed bands Bf,q defined for
each function f ∈ F and each q ∈ [0,+∞[ by

Bf,q =
{
(x, y) ∈ R2 : |y − f(x)| ≤ q

}
,

the function fLRM can be characterized geometrically. The closed band
BfLRM ,qLRM

(where qLRM := sup CfLRM
) is the thinnest band of the form

Bf,q containing at least k imprecise data, for all f ∈ F and all q ∈ [0,+∞[.
Thus, to determine the function fLRM it suffices to adapt to the case of
imprecise data an algorithm for the least quantile of squares regression, as
we do in Section 3.1. Figure 2 shows fLRM (solid line) for the LIR analysis
of the example data set introduced in Figure 1, as well as the closed band
BfLRM ,qLRM

of width 2 qLRM (dashed lines).
However, fLRM is not regarded as the final result of the LIR analysis.

The aim of a LIR analysis is to describe the whole uncertainty about the

Fig. 2 Function fLRM

(solid line) for the LIR
analysis of the example data

set introduced in Figure 1

with p = 0.5, β = 0.8, ε = 0
(implying k = 7 and k =
10) and band BfLRM ,qLRM

(dashed lines).
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relation between X and Y , including the statistical uncertainty due to the
finite sample as well as the indetermination related to the fact that the quan-
tities are only imprecisely observed. Therefore, the set of all functions that
are plausible in the light of the data is considered as the set-valued result
of the LIR analysis, which describes the entire uncertainty involved in the
regression problem with imprecise data. A regression function f ∈ F is re-
garded as plausible, if the corresponding confidence interval Cf is not strictly
dominated by another one. Thus, the result of the LIR analysis is the set

{f ∈ F : min Cf ≤ qLRM} = {f ∈ F : rf,(k+1) ≤ qLRM}.

The undominated functions can be characterized geometrically by the fact
that the corresponding closed bands Bf,qLRM

(i.e. the bands have width
2 qLRM ) intersect at least k + 1 imprecise data. This characterization is the
basis of the second part of the algorithm presented in the next section.

3 An exact algorithm for LIR

As a first implementation of the robust LIR method, we suggested in [3] a
grid search over the space of parameters identifying the considered regression
functions, while we considered a random search in [2]. Here, we derive an
exact algorithm to determine the result of the robust LIR analysis in the
case of simple linear regression with interval data. The algorithm consists of
two parts: first, we find the optimal function fLRM , which is then used to
identify the set of all undominated regression lines. It can be proved that
the computational complexity of the algorithm is O(n3 log n), i.e. it is of
the same order as the complexity of the initial algorithm for least median of
squares regression (see [6]).

3.1 Part 1: Finding the LRM line

Analogously to what is shown in [6] for the case with precise data, it is
possible to prove that, if the slope bLRM of the function fLRM is different from
zero, the band BfLRM ,qLRM

is determined by three imprecise observations V ∗
i

for which rfLRM ,i = qLRM . Figure 3 illustrates this fact for the example of
Figure 2. From this property follows that bLRM is either zero or given by
the slope of the line connecting the corresponding corner points of two of
the observations. Thus, in order to identify candidates for bLRM it suffices to
consider the four slopes between the corresponding vertices of each pair of
(nonidentical) bounded imprecise observations. In this way, we obtain a set
of at most 4

(n
2

)
+ 1 candidates for the slope of fLRM .
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Fig. 3 Band BfLRM ,qLRM

(dashed lines) for the LIR

analysis considered in
Figure 2. The three im-

precise data determining
BfLRM ,qLRM

in this case
are highlighted.
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For a given slope b, it is easy to determine the intercept a for which
the width of the resulting closed band around fa,b (containing at least k
imprecise data) is minimal (over all linear functions with slope b). Consider
the transformed data Z∗

i := [Zi, Zi], i = 1, . . . , n obtained as

Zi =

{
Y i − bXi , b > 0
Y i − bXi , b ≤ 0

and Zi =

{
Y i − bXi , b > 0
Y i − bXi , b ≤ 0

.

Then finding the thinnest band containing (at least) k of the imprecise data
V ∗
i corresponds to finding the shortest interval containing (at least) k of the

transformed imprecise data Z∗
i . Since the bands Bf,q are symmetric around

f , the optimal intercept for a fixed candidate slope is given by the center of
the shortest interval containing (at least) k of the transformed imprecise data
Z∗
i . It can be proved that this shortest interval is one of the n−k+1 intervals

going from the j-th ordered lower endpoint Z(j) to the k-th of those ordered
upper endpoints whose corresponding lower endpoints are not smaller than
Z(j), for j = 1, . . . , n− k + 1. The interval with the shortest length provides
the optimal intercept by its midpoint and the corresponding bandwidth by
its length.

In this way, we obtain for each of the candidate slopes the associated
optimal intercept and the resulting upper endpoint of the confidence interval,
which corresponds to half of the width of the associated closed band. The
function fLRM is then given by the function with the minimal upper endpoint.

3.2 Part 2: Identifying the set of all undominated lines

Once fLRM and the associated qLRM are known, the actual result of the
LIR analysis is determined, which is the set of all regression lines that are
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not strictly dominated by fLRM . For each b ∈ R there is a (possibly empty)
set Ab consisting of all intercept values a such that the function fa,b is not
strictly dominated by fLRM .

To determine Ab, we make use of the fact that the closed band of width
2 qLRM around an undominated regression line intersects at least k+1 impre-
cise data. Consider again the transformed data Z∗

i , then finding the centers
of all bands of width 2 qLRM that intersect (at least) k + 1 of the imprecise
data V ∗

i reduces to finding the centers of all intervals (of length 2 qLRM ) that
intersect (at least) k + 1 of the transformed imprecise data Z∗

i . Thus, for
each b we look for the values a such that the intervals [a− qLRM , a+ qLRM ]
intersect at least k + 1 of the Z∗

i , i = 1, . . . , n. For each subset of k + 1
transformed imprecise data, Z∗

i1
, . . . , Z∗

ik+1
, the set of undominated interval

centers is the interval[
max

i∈{i1,...,ik+1}
Zi − qLRM , min

i∈{i1,...,ik+1}
Zi + qLRM

]
.

If the lower interval endpoint exceeds the upper one, the set of undominated
interval centers associated with the considered subset of imprecise data is
empty. This means that there is no interval of length 2 qLRM intersecting all
of the considered imprecise data.

Employing this idea, we can prove that for each b the set Ab can be
obtained as the union of the intervals [Z(k+j) − qLRM , Z(j) + qLRM ], j =

1, . . . , n − k, where Z(i) and Z(i) are the i-th ordered lower and upper end-
points of the imprecise data, respectively. Finally, the whole set of parameters
(a, b) identifying the undominated functions is given by the union of the sets
Ab × {b} over all b ∈ R. It can be shown that this set is polygonal, but it is
not necessarily convex nor connected. Figure 4 shows the complex shape of
this set in our example and in Figure 5 the corresponding regression functions
are plotted.

Fig. 4 Set of parameters
corresponding to the set

of undominated regression
lines for the LIR analysis

considered in Figure 2.
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Fig. 5 Set of undominated

regression functions for the

LIR analysis considered in
Figure 2.
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4 Conclusions

We presented an algorithm to determine the set-valued result of a robust LIR
analysis in the case of simple linear regression with interval data. The algo-
rithm is directly derived from the geometrical properties of the LIR results
and it is exact. The proofs will be given in an extended version of this pa-
per. The presented algorithm can be seen as a generalization of an algorithm
developed for the least median of squares regression (see [5, 6]), from which
it inherits the computational complexity O(n3 log n). The algorithm can be
further generalized to multiple regression and to other kinds of imprecise
data.

So far, we have implemented the algorithm as a general function using the
statistical software environment R (see [4]). In future work, we intend to set
up an R package for linear regression with LIR.
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