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Abstract If we interpret the statistical likelihood function as a measure
of the relative plausibility of the probabilistic models considered, then we
obtain a hierarchical description of uncertain knowledge, offering a unified
approach to the combination of probabilistic and possibilistic uncertainty.
The fundamental advantage of the resulting fuzzy probabilities with respect
to imprecise probabilities is the ability of using all the information provided
by the data.
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1 Introduction
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This paper presents a probabilistic-possibilistic hierarchical model based on
the likelihood function. Thanks to the intuitivity and asymptotic properties
of the likelihood function, the hierarchical model is an ideal basis for inference
and decision making: this aspect is analyzed in [2]. The hierarchical model can
be interpreted as a fuzzy probability measure, and offers a unified approach
to the combination of probabilistic and possibilistic uncertainty.

Fuzzy probabilities generalize imprecise probabilities by additionally con-
sidering the relative plausibility of different values in the probability intervals
(imprecise probabilities correspond to the crisp case of fuzzy probabilities).
By abandoning the crispness of imprecise probabilities, the hierarchical model
solves a fundamental problem of the imprecise probability approach: its sta-
tistical inconsistency.
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2 Hierarchical model

Let P be a set of probability measures on a measurable space (Ω,A) such that
A contains all singletons of Ω. Each P ∈ P is interpreted as a probabilistic
model of the reality under consideration. The interpretation of probability is
not important: for instance the elements of P can be statistical models, or
describe the forecasts of a group of experts.

When an event A ∈ A is observed, the likelihood function

lik : P 7−→ P (A)

on P describes the relative ability of the probabilistic models in P to forecast
the observed data. Spurious modifications of the situation considered or of its
mathematical representation can lead to likelihood functions proportional to
lik. Therefore, proportional likelihood functions are considered equivalent;
in fact, Fisher [8] defined the likelihood of a statistical model as a quan-
tity proportional to the probability of the observed data. Hence, only ratios
lik(P )/lik(P ′) of the values of lik for different P, P ′ ∈ P have meaning: Kull-
back and Leibler [11] interpreted log[lik(P )/lik(P ′)] as the information in A
for discrimination in favor of P against P ′. When the realization of a contin-
uous random object is observed, the usual definition of likelihood function in
terms of density can be seen as an approximation of lik (see [2, Section 1.2]).

The likelihood function can thus be interpreted as a measure of the relative
plausibility of the probabilistic models in the light of the observed data alone.
Under each probabilistic model P ∈ P, the likelihood ratio lik(P )/lik(P ′)
of P against a different probabilistic model P ′ ∈ P almost surely increases
without bound when more and more data are observed, and consequently
lik tends to concentrate around P , if some regularity conditions are satis-
fied. Thanks to this asymptotic property and to its intuitivity, the likelihood
function is an ideal basis for statistical inference and decision making (see
[13] for an introduction to the likelihood approach to statistics).

Example 1. Let P = {Pp : p ∈ [0.1, 0.6]} be a set of probability measures on
a measurable space (Ω,A), such that for each Pp ∈ P the random variables
X0, . . . , X100 : Ω → {0, 1} satisfy the following conditions: Pp{X0 = 0} = 1

2 ,
and conditional on the realization of X0 the random variables X1, . . . , X100

are independent with Pp{Xi = 1 |X0 = 0} = 1
2 and Pp{Xi = 1 |X0 = 1} = p

for all i ∈ {1, . . . , 100}.
The realizations of X1, . . . , X100 are observed: 20 of them take the value

1. The resulting likelihood function

lik : Pp 7−→ 1
2

(
1
2

)100
+ 1

2 p
20 (1− p)80

on P is concentrated around P0.2, which is the most plausible element of P
in the light of the observed data alone. The case with X0 = 0 has almost
no influence on the form of the likelihood function, and in fact this case is
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extremely implausible in the light of the observed data and of the probabilistic
models considered.

The likelihood function lik measures the relative plausibility of the ele-
ments of P, but a measure of the relative plausibility of the subsets of P
is often needed. A simple and effective way to obtain it consists in defining
the plausibility of a set of probabilistic models as the plausibility of its best
element: the result is the set function

H 7−→ sup
P∈H

lik(P )

on the power set 2P of P (in this paper, sup∅ = 0). Proportional set func-
tions of this form are equivalent, since they correspond to equivalent likeli-
hood functions: to underline this relative meaning, the expression “relative
plausibility measure” is used in [2] to denote an equivalence class of propor-
tional set functions of this form. Their normalized version LR associates to
each H ⊆ P the corresponding likelihood ratio statistic

LR(H) =
supP∈H lik(P )

supP∈P lik(P )
.

The likelihood ratio test discards the hypothesis that the data were generated
by some P ∈ H if LR(H) is sufficiently small.

Let g : P → G be a function. The likelihood function lik on P induces the
(normalized) profile likelihood function

likg : γ 7−→ LR(g−1{γ}) ∝ sup
P∈P : g(P )=γ

lik(P )

on G (in this paper, g−1 denotes the set function associating to each subset of
G its inverse image under g). The profile likelihood function likg measures the
relative plausibility of the values of g, on the basis of the above definition of
plausibility for a set of probabilistic models. Themaximum likelihood estimate
γ̂ML of g(P ) is the γ ∈ G maximizing likg(γ) (that is, likg(γ̂ML) = 1), when
such a γ exists and is unique. The likelihood-based confidence region for g(P )
with cutoff point α ∈ (0, 1) is the set {γ ∈ G : likg(γ) > α}: it is the smallest
G ⊆ G such that LR{P ∈ P : g(P ) /∈ G} ≤ α.

Example 2. Consider the situation of Example 1, and let g : P → [0, 1] asso-
ciate to each probabilistic model in P the probability of X0 = 0 conditional
on the observed realizations of X1, . . . , X100:

g : Pp 7−→
(
1
2

)100(
1
2

)100
+ p20 (1− p)80

.

Figure 1 shows the graph of the profile likelihood function likg on [0, 5 ·
10−7]: as expected, likg is extremely concentrated near 0, because X0 = 1 is
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compatible with the observed data, whileX0 = 0 is not. In fact, the maximum
likelihood estimate of g(Pp) is γ̂ML ≈ 0.04 · 10−7, and the likelihood-based
confidence region for g(Pp) with cutoff point α = 0.01 corresponds approxi-
mately to the interval (0.04 · 10−7, 4.26 · 10−7).

The probabilistic models in P and the likelihood function lik on P can
be interpreted as the two levels of a hierarchical model of the reality under
consideration. The two levels describe different kinds of uncertain knowledge:
in the first level the uncertainty is stochastic, while in the second one it is
about which of the probabilistic models in P is the best representation of
the reality. It is important to underline that no probabilistic model in P is
assumed to be in some sense “true”: the elements of P are simply interpreted
as more or less plausible representations of the reality (this interpretation
of the hierarchical model is shared by Edwards [7]). By contrast, the use
of a probability measure on P, suggested by the Bayesian approach, carries
the implicit assumption that exactly one of the probabilistic models in P is
“true” (see [2, Section 3.1]).

The definition of likelihood function implies that when an event A ∈ A is
observed, the two levels P and lik of the hierarchical model are updated to

P ′ = {P ( · |A) : P ∈ P, P (A) > 0} (1)

and to lik′ : P ′ 7−→ sup
P∈P :P ( · |A)=P ′

lik(P )P (A),

respectively. When A is the first observed event, the prior likelihood function
lik can be interpreted as a (subjective) measure of the relative plausibility of
the probabilistic models in P according to the prior information. The choice
of a prior likelihood function on P seems to be better supported by intuition
than the choice of a prior probability measure on P: in particular, a constant
likelihood function describes complete ignorance (in the sense of absence of
information for discrimination between the probabilistic models). In fact, if
lik is constant, then lik′ is proportional to the profile likelihood function on P ′

induced by the observation A and the conditioning P 7→ P ( · |A). Moreover,
the choice of a prior likelihood function can be based on analogies with the
likelihood functions induced by hypothetical data (see also [3]).



Fuzzy Probabilities Based on the Likelihood Function 5

3 Fuzzy probabilities

A possibility distribution on a set G is a function π : G → [0, 1]. The possibility
measure on G with possibility distribution π is the set function

G 7−→ sup
γ∈G

π(γ)

on 2G . A possibility distribution π on G can also be considered as the mem-
bership function of a fuzzy subset of G (see [17]); when π is crisp (that is, π
can take only the values 0 and 1), the subset is not fuzzy and π is its indicator
function on G. The likelihood ratio statistic LR is a possibility measure on
P with possibility distribution proportional to the likelihood function lik on
P. In fact, the membership function of a fuzzy set has often been interpreted
as a likelihood function (see for example [10, 5]), even though proportional
membership functions were not always considered equivalent (see for instance
[6]). In the present paper, membership functions and possibility distributions
are interpreted as proportional to likelihood functions. Hence, it suffices to
consider normalized fuzzy sets and normalized possibility measures (that is,
supγ∈G π(γ) = 1 is assumed), but grades of membership and degrees of pos-
sibility have only a relative meaning.

The hierarchical model considered in the previous section can thus be inter-
preted as consisting of a probabilistic level (described by P) and a possibilistic
level (described by LR). That is, it can be interpreted as a probabilistic-
possibilistic hierarchical description of uncertain knowledge about ω ∈ Ω.
Both the purely probabilistic and the purely possibilistic descriptions of un-
certain knowledge about ω ∈ Ω appear as special cases. In fact, when P
is a singleton, the uncertainty about ω ∈ Ω is purely probabilistic (LR on
P = {P} contains no information, since its meaning is only relative). By con-
trast, when P consists of all the Dirac measures (that is, P = {δω : ω ∈ Ω}
with δω{ω} = 1), the uncertainty about ω ∈ Ω is purely possibilistic (LR
can be considered as a possibility measure on Ω, since each δω ∈ P can be
identified with the corresponding ω ∈ Ω).

The hierarchical model can also be interpreted as a fuzzy probability mea-
sure on (Ω,A), in the sense that it is a fuzzy subset of the set of all probability
measures on (Ω,A), with membership function proportional to lik on P and
constant equal to 0 outside P. More generally, the uncertain knowledge about
the value g(P ) of a function g : P → G is described by the induced possibility
measure LR ◦ g−1 on G; that is, by the fuzzy subset of G with member-
ship function likg. In particular, when g : P → R, the uncertain knowledge
about g(P ) is described by a fuzzy number (that is, a fuzzy subset of R).
For example, g can associate to each probabilistic model P the expectation
g(P ) = EP (X) of a random variable X, or the probability g(P ) = P (A) of
an event A ∈ A: the membership function likg describes then the fuzzy ex-
pectation of X, or the fuzzy probability of A, respectively. Sometimes a fuzzy
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number can be a satisfactory conclusion about the value of g(P ), but it is
often necessary to evaluate the fuzzy number by a single real number (such as
the maximum likelihood estimate γ̂ML) or by a couple of real numbers (such
as the infimum and the supremum of a likelihood-based confidence region
{γ ∈ R : likg(γ) > α}). The discussion on how to evaluate a fuzzy number
by one or more real numbers goes beyond the scope of the present paper, but
see [2, Section 4.1] for some interesting results (to each evaluation method
corresponds a likelihood-based decision criterion).

Example 3. The prior fuzzy probability measure on (Ω,A) considered in Ex-
amples 1 and 2 is crisp, in the sense that its membership function on the
set of all probability measures on (Ω,A) is crisp. In fact, the only prior
(non-stochastic) uncertainty is about the value of the probability of Xi = 1
conditional on X0 = 1 (with i ∈ {1, . . . , 100}), and the only prior information
about this value is that it lies in the interval [0.1, 0.6]. But the updated fuzzy
probability measure on (Ω,A) obtained after having observed the realizations
of X1, . . . , X100 is not crisp anymore: the fuzzy (conditional) probability of
X0 = 0 has membership function likg (plotted in Figure 1). Hence, any rea-
sonable evaluation of the fuzzy (conditional) probability of X0 = 0 by a real
number (such as the maximum likelihood estimate γ̂ML ≈ 0.04 · 10−7, or the
lower and upper evaluations 0.04 · 10−7 and 4.26 · 10−7 considered at the end
of Example 2) would be approximately 0.

The hierarchical model offers a unified approach to the combination of
probabilistic and possibilistic uncertainty (in particular, fuzzy data would
pose no problem). Since membership functions and possibility distributions
are interpreted as proportional to likelihood functions, the rules for manipu-
lating fuzzy probabilities are implied by the well-established theories of prob-
ability and likelihood (the same holds for the approach of De Cooman [4],
which uses a different interpretation of possibility measures). By contrast, ap-
proaches based on the arithmetic of fuzzy numbers (see for example [14, 1])
face the problem of choosing and justifying such rules: the choice of a consis-
tent way of updating the fuzzy probability models in the light of data seems
to be particularly difficult.

4 Imprecise probabilities

The mathematical representations of reality used in the classical and Bayesian
approaches to statistics can be considered as special cases of the hierarchi-
cal model (see [2, Section 3.2]). By contrast, the imprecise probability model
cannot be considered as a special case of the hierarchical model, because
the updating rules are different. The mathematical representation of reality
used in the imprecise probability approach to statistics can be described as
a (convex) set P of probabilistic models, without information for discrimina-
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tion between them. This corresponds to a hierarchical model with constant
likelihood function on P, but the imprecise probability model is usually up-
dated by regular extension (see [15, Appendix J]): that is, by conditioning
each P ∈ P on the observed data, without considering the information pro-
vided by the likelihood function on P. More precisely, when an event A ∈ A
is observed, the set P is updated to the set P ′ as in (1), but the constant
likelihood function on P is not updated: the likelihood function on P ′ is
still constant; that is, the information in A for discrimination between the
elements of P is disregarded.

For instance, if the probabilistic models in P describe the opinions of a
group of Bayesian experts, then the updating by regular extension corre-
sponds to update the opinion of each expert without reconsidering her/his
credibility, independently of how bad her/his forecasts were when compared
to the forecasts of the other experts. This is not very reasonable, and in fact
the updating by regular extension can lead to inconsistency, in the statisti-
cal sense of not tending to the correct conclusion, even when the amount of
information provided by the data tends to infinity.

Example 4. The set P of probabilistic models considered in Examples 1, 2,
and 3 can be interpreted as an imprecise probability measure on (Ω,A).
If it is updated by regular extension, when the realizations of X1, . . . , X100

are observed, then the resulting imprecise probability measure is described
by the set P ′. In particular, the resulting uncertain knowledge about the
(conditional) probability of X0 = 0 is described by the lower and upper
probabilities

inf
P ′∈P′

P ′{X0 = 0} ≈ 4.26 · 10−9 and sup
P ′∈P′

P ′{X0 = 0} ≈ 1− 6.77 · 10−7.

That is, despite the overwhelming information in favor of X0 = 1 against
X0 = 0, almost complete ignorance about the (conditional) probabilities of
X0 = 0 and X0 = 1 is obtained when the imprecise probability model is
updated by regular extension (it is important to note that these results do
not change when P is replaced by its convex hull). In fact, the resulting in-
terval probability of X0 = 0 is the support {γ ∈ [0, 1] : likg(γ) > 0} of the
membership function likg of the fuzzy (conditional) probability of X0 = 0
(plotted in Figure 1): likg is extremely concentrated near 0, but this informa-
tion is disregarded when updating the imprecise probability model by regular
extension (the present example was proposed by Wilson [16]).

The imprecise probability model can be seen as the crisp (and convex)
case of the fuzzy probability model, but in general the crispness of the fuzzy
probability model is lost when it is updated. Hence, from the point of view
of the hierarchical model, the regular extension forces the crispness of the
updated model by disregarding a part of the information provided by the
data, and this can lead to statistical inconsistency. Many authors (see for
example [16, 12]) have replaced, in particular problems, the regular extension
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with alternative updating rules making use of some information contained in
the likelihood function on P. But no alternative rule updating P to a subset of
P ′ can assure the statistical consistency, because any discarded probabilistic
model can become the most plausible one in the light of new data.

5 Conclusion

Statistical inconsistency is a fundamental problem of the theory of impre-
cise probabilities: a simple solution is to generalize imprecise probabilities to
fuzzy probabilities, and use the probabilistic-possibilistic hierarchical model
presented in this paper. In fact, fuzzy probabilities seem to be very intuitive:
many authors (see for example [9, 4]) have studied models similar to the
hierarchical one to accommodate the fact that usually not all the values in
probability intervals are considered equally plausible.
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