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introduction

I the classical and Bayesian approaches to statistics are unified and
generalized by the corresponding decision theories

I the likelihood approach to statistics is extremely successful in practice, but it
is not unified and generalized by a decision theory

I is such a likelihood decision theory possible?

I in statistics, L usually denotes:

I likelihood function

(here λ)

I loss function

(here W )

I statistical model: (Ω,F ,Pθ) with θ ∈ Θ (where Θ is a nonempty set) and
random variables Xi : Ω → Xi
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loss function

I a statistical decision problem is described by a loss function

W : Θ×D → [0,+∞),

where D is a nonempty set

I intended as unification (and generalization) of statistical inference,
in particular of:

I point estimation (e.g., with D = Θ)

I hypothesis testing (e.g., with D = {H0,H1})

I most successful general methods:

I point estimation: maximum likelihood estimators

I hypothesis testing: likelihood ratio tests

I these methods do not fit well in the setting of classical or Bayesian decision
theory: here they are unified (and generalized) in likelihood decision theory
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simple decision example

I random sample of 3 black balls from an urn containing 100 balls, of which
θ ∈ Θ = {50, 99, 100} are black: select d ∈ D = {“50”, “not 50”}

W “50” “not 50” λ

50 0 15 0.12
99 1 0 0.97
100 1 0 1.00

I classical decision: choose what it means to repeat the experiment, select
the decision rule minimizing the (pre-data) expected loss, and apply it to the
particular data (difficult and indirect)

I Bayesian decision: choose a prior on Θ and select the decision minimizing
the (post-data) expected loss (prior dependent)

I maximum likelihood decision: select the decision minimizing the loss when
θ = θ̂ML (i.e., “not 50”, since θ̂ML = 100) (too optimistic)
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likelihood function

I λx : Θ → [0, 1] is the (relative) likelihood function given X = x , when

sup
θ∈Θ

λx(θ) = 1 and λx(θ) ∝ Pθ(X = x)

(with λx(θ) ∝ fθ(x) as approximation for continuous X )

I λx describes the relative plausibility of the possible values of θ in the light of
the observation X = x , and can thus be used as a basis for post-data
decision making

I prior information can be described by a prior likelihood function: if X1 and
X2 are independent, then λ(x1,x2) ∝ λx1 λx2 (i.e., when X2 = x2 is observed,
the prior λx1 is updated to the posterior λ(x1,x2))

I strong similarity with the Bayesian approach (both satisfy the likelihood
principle): a fundamental advantage of the likelihood approach is the
possibility of not using prior information (since λx1 ≡ 1 describes complete
ignorance)
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MPL criterion

I MPL criterion: minimize supθ∈Θ W (θ, d)λ(θ)

(i.e., minimize
∫ S

W ( · , d) dΛ, the maxitive integral of the loss W ( · , d)
with respect to the maxitive measure Λ : H 7→ supθ∈H λ(θ))

I e.g., in the previous simple decision example, the MPL decision is “50”

I point estimation:

I D = Θ finite

I W ( · , θ̂) = IΘ\{θ̂} simple loss function

I MPL decision: maximum likelihood estimate θ̂ML

I hypothesis testing:

I D = {H0,H1} with H0 : θ ∈ H0 ⊂ Θ and H1 : θ ∈ H1 = Θ \ H0

I W ( · ,H1) = c IH0 and W ( · ,H0) = c ′ IH1 with c ≥ c ′

I MPL decision: likelihood ratio test Λ(H0) ≥ c′

c
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simple estimation example

I X1, . . . ,Xn
i.i.d.∼ N (θ, σ2) with Θ = (0,+∞) (i.e., θ positive and σ known)

I estimation of θ with squared error:

I D = Θ with W (θ, θ̂) = (θ − θ̂)2

I no unbiased estimator, maximum likelihood estimator not well-defined, no
standard (proper) Bayesian prior

I estimator resulting from the MPL criterion:

I scale invariance and sufficiency: θ̂(x1, . . . , xn) = g
(√

n
σ

x̄
)

σ√
n

I consistency and asymptotic efficiency: θ̂(x1, . . . , xn) = x̄ when x̄ ≥
√
2σ√
n
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likelihood decision criteria

I likelihood decision criterion: minimize V (W ( · , d), λ)
(e.g., V (w , λ) = supθ∈Θ w(θ)λ(θ) for the MPL criterion),

where the functional V must satisfy the following three properties, for all
functions w ,w ′ : Θ → [0,+∞) and all likelihood functions λ, λn : Θ → [0, 1]

I monotonicity: w ≤ w ′ (pointwise) ⇒ V (w , λ) ≤ V (w ′, λ)

(implied by meaning of W )

I parametrization invariance: b : Θ → Θ bijection ⇒ V (w ◦b, λ ◦b) = V (w , λ)

(excludes Bayesian criteria V (w , λ) =
∫
w λ dµ∫
λ dµ

for infinite Θ)

I consistency: H ⊆ Θ with limn→∞ supθ∈Θ\H λn(θ) = 0 ⇒
limn→∞ V (c IH + c ′ IΘ\H, λn) = c for all constants c, c ′ ∈ [0,+∞)

(excludes minimax criterion V (w , λ) = supθ∈Θ w(θ),
implies calibration: V (c, λ) = c)

I likelihood decision function: δ : X → D such that δ(x) minimizes
V (W ( · , d), λx) for all x ∈ X
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properties

I likelihood decision criteria have the advantages of post-data methods:

I independence from choice of possible alternative observations

I direct interpretation

I simpler problems

I likelihood decision criteria have also important pre-data properties:

I equivariance: for invariant decision problems, the likelihood decision functions
are equivariant

I consistency: under some regularity conditions, the likelihood decision
functions δn : X1 × · · · × Xn → D satisfy

lim
n→∞

W (θ, δn(X1, . . . ,Xn)) = inf
d∈D

W (θ, d) Pθ-a.s.

I asymptotic efficiency: under slightly stronger regularity conditions, the above
convergence is as fast as possible
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example: estimation of variance components

I estimation of the variance components in the 3× 3 random effect one-way
layout, under normality assumptions and weighted squared error loss

Xij = µ+ αi + εij for all i , j ∈ {1, 2, 3}

I normality assumptions:

αi ∼ N (0, va), εij ∼ N (0, ve), all independent

⇒ Xij ∼ N (µ, va + ve) dependent, θ = (µ, va, ve) ∈ R× (0,∞)2
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example: estimation of variance components

I estimates v̂e and v̂a of variance components ve and va are functions of

SSe =
3∑

i=1

3∑
j=1

(xij − x̄i·)
2 and SSa = 3

3∑
i=1

(x̄i· − x̄··)
2,

where

x̄i· =
1

3

3∑
j=1

xij , x̄·· =
1

9

3∑
i=1

3∑
j=1

xij ,

SSe
ve

∼ χ2
6, and

1
3 SSa

va +
1
3 ve

∼ χ2
2

I invariant loss functions:

W (θ, v̂e) = 3
(ve − v̂e)

2

ve2
and W (θ, v̂a) =

(va − v̂a)
2

(va +
1
3 ve)

2
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example: estimation of variance components

v̂e
SSa+SSe

v̂a
SSa+SSe

0.04

0.2
0

0 0.4

0.08

SSa/(SSa+SSe)
10.80.6

0.16

0.12

MPL                     

ANOVA = ANOVA+ = MINQU  

ML                      

ReML                    

-0.05

0.20

0.1

0.4
0

SSa/(SSa+SSe)

10.8

0.15

0.6

0.05

MPL                     

ANOVA                   

ML                      

ReML = ANOVA+           

nonneg. MINQ min. bias  
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example: estimation of variance components

3
E [(v̂e−ve )

2]

ve 2
E [(v̂a−va)

2]

(va+
1
3
ve )2

0.20

1

0.85

0.8

Va/(Va+Ve)

0.7

0.80.4

0.95

0.9

0.75

10.6

MPL                     

ANOVA = ANOVA+ = MINQU  

ML                      

ReML                    

1.6

0.2

1.2

0.4

0.8

0

0.4

Va/(Va+Ve)
0.80.6 1

MPL                     

ANOVA                   

ML                      

ReML = ANOVA+           

nonneg. MINQ min. bias  
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conclusion

I this work:

I fills a gap in the likelihood approach to statistics

I introduces an alternative to classical and Bayesian decision making

I offers a new perspective on the likelihood methods

I likelihood decision making:

I is post-data and equivariant

I is consistent and asymptotically efficient

I does not need prior information
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