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introduction

updating rules Bayesian coherent α-cut

continuity X × X

vacuous priors × × X

iterative consistency X X ×
coherence X X ×
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updating rules

I when an event B ⊂ Ω is observed, previsions must be updated

I Bayesian updating of linear previsions P with P(B) > 0:

P 7→ P( · |B) with P(X |B) = P(X IB)

P(B)
for all bounded X : Ω → R

I generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

I regular extension:
P 7→ inf

P≥P, P(B)>0
P( · |B)

I α-cut rule, where α ∈ (0, 1):

P 7→ inf
P≥P, P(B)≥α P(B)

P( · |B)

Marco Cattaneo @ University of Hull Updating and avoiding sure loss 3/9



updating rules

I when an event B ⊂ Ω is observed, previsions must be updated

I Bayesian updating of linear previsions P with P(B) > 0:

P 7→ P( · |B) with P(X |B) = P(X IB)

P(B)
for all bounded X : Ω → R

I generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

I regular extension:
P 7→ inf

P≥P, P(B)>0
P( · |B)

I α-cut rule, where α ∈ (0, 1):

P 7→ inf
P≥P, P(B)≥α P(B)

P( · |B)

Marco Cattaneo @ University of Hull Updating and avoiding sure loss 3/9



updating rules

I when an event B ⊂ Ω is observed, previsions must be updated

I Bayesian updating of linear previsions P with P(B) > 0:

P 7→ P( · |B) with P(X |B) = P(X IB)

P(B)
for all bounded X : Ω → R

I generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

I regular extension:
P 7→ inf

P≥P, P(B)>0
P( · |B)

I α-cut rule, where α ∈ (0, 1):

P 7→ inf
P≥P, P(B)≥α P(B)

P( · |B)

Marco Cattaneo @ University of Hull Updating and avoiding sure loss 3/9



updating rules

I when an event B ⊂ Ω is observed, previsions must be updated

I Bayesian updating of linear previsions P with P(B) > 0:

P 7→ P( · |B) with P(X |B) = P(X IB)

P(B)
for all bounded X : Ω → R

I generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

I regular extension:
P 7→ inf

P≥P, P(B)>0
P( · |B)

I α-cut rule, where α ∈ (0, 1):

P 7→ inf
P≥P, P(B)≥α P(B)

P( · |B)

Marco Cattaneo @ University of Hull Updating and avoiding sure loss 3/9



updating rules

I when an event B ⊂ Ω is observed, previsions must be updated

I Bayesian updating of linear previsions P with P(B) > 0:

P 7→ P( · |B) with P(X |B) = P(X IB)

P(B)
for all bounded X : Ω → R

I generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

I regular extension:
P 7→ inf

P≥P, P(B)>0
P( · |B)

I α-cut rule, where α ∈ (0, 1):

P 7→ inf
P≥P, P(B)≥α P(B)

P( · |B)

Marco Cattaneo @ University of Hull Updating and avoiding sure loss 3/9



continuity

I Bayesian updating is continuous with respect to the metric

d(P,P ′) = sup
X : Ω→[−1, 1]

|P(X )− P ′(X )|

I α-cut updating is continuous with respect to the (Hausdorff) metric

d(P,P ′) = sup
X : Ω→[−1, 1]

∣∣P(X )− P ′(X )
∣∣

for all α ∈ (0, 1), while regular/natural/coherent updating has discontinuities
at points P with P(B) > P(B) = 0 (Cattaneo, 2014)
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vacuous priors

I contrary to linear previsions, lower previsions can describe prior ignorance
about the unknowns of a statistical model

I contrary to regular/natural/coherent updating, the α-cut rule can update
vacuous priors to non-vacuous posteriors in statistical analyses

I for regular statistical models, the imprecise previsions obtained from vacuous
priors by means of α-cut updating are confidence intervals with (asymptotic)
level Fχ2(−2 lnα) (Wilks, 1938)
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iterative consistency

I Bayesian updating is iteratively consistent:

P(( · |B) |C ) = P( · |B ∩ C ) = P(( · |C ) |B)

I contrary to regular/natural updating, the α-cut rule is not iteratively
consistent in general

I this can be remedied by recording the whole (second-order) likelihood
function lik(P) ∝ P(observations) as the second level of a hierarchical
model (Cattaneo, 2008)

I the α-cut is then a way of obtaining lower previsions from the hierarchical
model
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coherence

I contrary to Bayesian and regular/natural/coherent updating, the α-cut rule
does not avoid sure loss in general

I example:

X ∼ Bernoulli( 12 )

(Y |X = 0) ∼ uniform on {1, . . . , n}
(Y |X = 1) ∼ vacuous on {1, . . . , n}

I regular/natural/coherent updating:

P(X = 1 |Y ) = 0 and P(X = 1 |Y ) =
n

n + 1
(dilation)

I α-cut updating:

P(X = 1 |Y ) =

(
1− 1

(n + 1)α

)
∨ 0

n→∞−→ 1 (sure loss)
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conclusion

I the relative importance of properties like coherence, continuity, and ability of
using vacuous priors depends on the application field and on the exact
interpretation of imprecise probabilities

I α-cut updating can be seen as a continuous approximation of coherent
updating, but as a general approach it is only reasonable when the whole
(second-order) likelihood function is recorded (iterative consistency)

I no (reasonable) method using the second-order likelihood function to obtain
lower previsions can avoid sure loss in general
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