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updating rules

» when an event B C Q is observed, previsions must be updated
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updating rules

» when an event B C Q is observed, previsions must be updated

» Bayesian updating of linear previsions P with P(B) > 0:

for all bounded X : Q2 — R

P P(-|B) with P(X|B)=
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updating rules

» when an event B C Q is observed, previsions must be updated
» Bayesian updating of linear previsions P with P(B) > 0:

P— P(-|B) with P(X|B)= for all bounded X :Q =R

» generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:
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updating rules

» when an event B C Q is observed, previsions must be updated

» Bayesian updating of linear previsions P with P(B) > 0:

P(X Ig)

P P(-|B) with P(X|B)= P(B)

for all bounded X : Q2 — R

» generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

> regular extension:
P P(-|B)

inf
P>P, P(B)>0
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updating rules

» when an event B C Q is observed, previsions must be updated

» Bayesian updating of linear previsions P with P(B) > 0:

P(X Ig)

P P(-|B) with P(X|B)= P(B)

for all bounded X : Q2 — R

» generalizations of Bayesian updating to (coherent) lower previsions P with
P(B) > 0:

> regular extension:

P P(-1B)

inf
P>P, P(B)>0

» a-cut rule, where a € (0,1):

P inf . _ P(-|B)
P>P, P(B)>a P(B)
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continuity

» Bayesian updating is continuous with respect to the metric

d(P,P) = sup [P(X)—P/(X)
X:Q—[—1,1]
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continuity

» Bayesian updating is continuous with respect to the metric
d(P,P)= sup [P(X)—P'(X)
X:Q—[-1,1]
> a-cut updating is continuous with respect to the (Hausdorff) metric

d(P,P )= sup |P(X)—P'(X)
X:Q—[-1,1]

for all o € (0, 1), while regular/natural/coherent updating has discontinuities
at points P with P(B) > P(B) =0 (Cattaneo, 2014)
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vacuous priors

» contrary to linear previsions, lower previsions can describe prior ignorance
about the unknowns of a statistical model
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vacuous priors

» contrary to linear previsions, lower previsions can describe prior ignorance
about the unknowns of a statistical model

> contrary to regular/natural/coherent updating, the a-cut rule can update
vacuous priors to non-vacuous posteriors in statistical analyses
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vacuous priors

» contrary to linear previsions, lower previsions can describe prior ignorance
about the unknowns of a statistical model

> contrary to regular/natural/coherent updating, the a-cut rule can update
vacuous priors to non-vacuous posteriors in statistical analyses

» for regular statistical models, the imprecise previsions obtained from vacuous
priors by means of a-cut updating are confidence intervals with (asymptotic)
level F2(—=2 Ina) (Wilks, 1938)
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iterative consistency

» Bayesian updating is iteratively consistent:

P((-1B)|C) = P(-|BN C) = P((-] C)| B)
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iterative consistency

» Bayesian updating is iteratively consistent:
P((-1B)IC)=P(-|BNC)=P((-[C)[B)

> contrary to regular/natural updating, the a-cut rule is not iteratively
consistent in general
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iterative consistency

» Bayesian updating is iteratively consistent:
P((-1B)IC)=P(-|BNC)=P((-[C)[B)

> contrary to regular/natural updating, the a-cut rule is not iteratively
consistent in general

> this can be remedied by recording the whole (second-order) likelihood
function lik(P) o P(observations) as the second level of a hierarchical
model (Cattaneo, 2008)
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iterative consistency

» Bayesian updating is iteratively consistent:
P((-1B)IC)=P(-|BNC)=P((-[C)[B)

> contrary to regular/natural updating, the a-cut rule is not iteratively
consistent in general

> this can be remedied by recording the whole (second-order) likelihood
function lik(P) o P(observations) as the second level of a hierarchical
model (Cattaneo, 2008)

> the a-cut is then a way of obtaining lower previsions from the hierarchical
model
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coherence

> contrary to Bayesian and regular/natural /coherent updating, the a-cut rule
does not avoid sure loss in general
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coherence

> contrary to Bayesian and regular/natural /coherent updating, the a-cut rule
does not avoid sure loss in general

> example:
X ~ Bernoulli(})
(Y| X =0) ~ uniformon {1,...,n}
(Y| X =1) ~ vacuous on {1,...,n}
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coherence

> contrary to Bayesian and regular/natural /coherent updating, the a-cut rule
does not avoid sure loss in general

> example:
X ~ Bernoulli(})
(Y| X =0) ~ uniformon {1,...,n}
(Y| X =1) ~ vacuous on {1,...,n}

> regular/natural/coherent updating:

P(X=1|Y)=0 and P(X=1|Y)= # (dilation)
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coherence

> contrary to Bayesian and regular/natural /coherent updating, the a-cut rule
does not avoid sure loss in general

> example:
X ~ Bernoulli(})
(Y| X =0) ~ uniformon {1,...,n}
(Y| X =1) ~ vacuous on {1,...,n}

> regular/natural/coherent updating:
P(X=1|Y)=0 and P(X=1]Y)= # (dilation)
» q-cut updating:

P(X—1|Y)—(1—(n+11)a>\/0 2% 1 (sure loss)
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conclusion

> the relative importance of properties like coherence, continuity, and ability of
using vacuous priors depends on the application field and on the exact
interpretation of imprecise probabilities

Marco Cattaneo @ University of Hull Updating and avoiding sure loss 8/9



conclusion

> the relative importance of properties like coherence, continuity, and ability of
using vacuous priors depends on the application field and on the exact
interpretation of imprecise probabilities

» «-cut updating can be seen as a continuous approximation of coherent
updating, but as a general approach it is only reasonable when the whole
(second-order) likelihood function is recorded (iterative consistency)
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conclusion

> the relative importance of properties like coherence, continuity, and ability of
using vacuous priors depends on the application field and on the exact
interpretation of imprecise probabilities

» «-cut updating can be seen as a continuous approximation of coherent
updating, but as a general approach it is only reasonable when the whole
(second-order) likelihood function is recorded (iterative consistency)

> no (reasonable) method using the second-order likelihood function to obtain
lower previsions can avoid sure loss in general
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