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example

I X ∈ {1, 2, 3}

I prior assessment: P(X ) = . . .

I observation: A = {X ̸= 2}

I updated prevision: P(X |A) = . . .

I natural/regular extension:

P(X |A)
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updating

I likelihood of linear previsions: lik(P) ∝ P(A)

I Bayesian updating: P 7→ P( · |A) when lik(P) ̸= 0

I regular updating: P 7→ infP∈M(P) :P(A)>0 P( · |A) when lik ̸≡ 0 on M(P)

I the discontinuities are “caused” by linear previsions P ∈ M(P) with
arbitrarily small likelihood (i.e., “almost contradicted” by the data)

I β-cut updating, with β ∈ (0, 1): P 7→ infP∈M(P) :P(A)>β P(A) P( · |A)
when lik ̸≡ 0 on M(P)

I regular updating is the limit of β-cut updating as β ↓ 0, while the limit as
β ↑ 1 is a generalization of Dempster’s rule of conditioning

I β-cut updating was used, e.g., in Antonucci et al. (2012); Cattaneo and
Wiencierz (2012); Destercke (2013), and similar updating rules for imprecise
probabilities were suggested, e.g., in Moral and de Campos (1991); Moral
(1992); Cano and Moral (1996)
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example

I β-cut updating:

P(X |A)
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I the slope of the central line segment is 1/β
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a more interesting example

I Piatti et al. (2005) studied the behavior of the IDM model when the
realization of each binary experiment X1,X2, . . . can be observed incorrectly
with a known probability ε (the errors of observation are independent,
conditional on the realizations of X1,X2, . . .)

I observation: X1 + · · ·+ X10 = 7 (i.e., 7 successes in 10 experiments)

I lower probability of success in the next experiment (with s = 2):
P(X11 = 1 |X1 + · · ·+ X10 = 7) = . . .

I regular updating:

P(X11 = 1 |X1 + · · ·+ X10 = 7) ≈
{

0.583 if ε = 0
0 if ε > 0

I β-cut updating with β = 0.01:

P(X11 = 1 |X1 + · · ·+ X10 = 7) ≈


0.585 if ε = 0
0.584 if ε = 0.01
0.581 if ε = 0.05
0.567 if ε = 0.1
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distances

I distance between two linear previsions P,P ′ on Ω
(dual/operator norm = total variation distance):

d(P,P ′) = sup
X : Ω→[−1, 1]

|P(X )− P ′(X )|

= 2 sup
A⊆Ω

|P(A)− P ′(A)|

I distance between two (coherent) lower previsions P,P ′ on Ω
(Hausdorff distance = “dual/operator norm”):

d(P,P ′) = max

{
sup

P∈M(P)

inf
P′∈M(P′)

d(P,P ′), sup
P′∈M(P′)

inf
P∈M(P)

d(P,P ′)

}
= sup

X : Ω→[−1, 1]

∣∣P(X )− P ′(X )
∣∣
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continuity

I Bayesian updating is continuous on all linear previsions P with P(A) > 0

I regular updating is continuous on all lower previsions P with P(A) > 0

I regular updating is not continuous on all lower previsions P with P(A) > 0,
apart if A = Ω or |A| = 1 (and the same holds for natural extension)

I β-cut updating is continuous on all lower previsions P with P(A) > 0,
for each β ∈ (0, 1)
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hierarchical model

I a likelihood function lik ′ on the set P of all linear previsions on Ω is
described by its normal hypograph

{(P, β) ∈ P × [0, 1] : β sup lik ′ ≤ lik ′(P)}

I hierarchical updating: lik ′ 7→ lik ′′(P ′) ∝ supP∈P :P( · |A)=P′ lik ′(P) lik(P)
when lik ′ lik ̸≡ 0

I distance between two likelihood functions lik ′, lik ′′ on P: Hausdorff
distance between their normal hypographs, with respect to a product metric
on P × [0, 1]

I hierarchical updating is continuous on all likelihood functions lik ′ with
lik ′ lik ̸≡ 0
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