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observation: A = {X # 2}
updated prevision: P(X|A)=...

natural /regular extension:
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updating

> likelihood of linear previsions: [lik(P) o< P(A)
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updating

> likelihood of linear previsions: lik(P) < P(A)
> Bayesian updating: P — P(-|A) when lik(P) #0
» regular updating: P — infpcrq(p): p(a)>o P(-| A) when lik # 0 on M(P)

> the discontinuities are “caused” by linear previsions P € M(P) with
arbitrarily small likelihood (i.e., “almost contradicted” by the data)

> B-cut updating, with 5 € (0,1): P infp v py. piayspp(a) P(- | A)
when lik # 0 on M(P)

> regular updating is the limit of S-cut updating as 3 | 0, while the limit as
B 1 1is a generalization of Dempster's rule of conditioning

> [-cut updating was used, e.g., in Antonucci et al. (2012); Cattaneo and
Wiencierz (2012); Destercke (2013), and similar updating rules for imprecise
probabilities were suggested, e.g., in Moral and de Campos (1991); Moral
(1992); Cano and Moral (1996)
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» [-cut updating:
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example

» [-cut updating:
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> the slope of the central line segment is /s
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a more interesting example

> Piatti et al. (2005) studied the behavior of the IDM model when the
realization of each binary experiment Xi, X3, ... can be observed incorrectly
with a known probability ¢ (the errors of observation are independent,
conditional on the realizations of Xi, Xa,...)
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with a known probability ¢ (the errors of observation are independent,
conditional on the realizations of Xi, Xa,...)

> observation: Xy +---4 Xy =7 (i.e., 7 successes in 10 experiments)

> lower probability of success in the next experiment (with s = 2):
PXu=1|Xi+-+Xpo=7)=...

> regular updating:

0583 ife=0
P(X11:1|X1+-~-+X10:7)’*‘4{0 :f€>0
» [-cut updating with 8 = 0.01: 0.585 ife—0

0.584 if e =0.01
0.581 if e =0.05
0.567 ife=0.1

PXu=1|Xi+ -+ Xio=7)~
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distances

» distance between two linear previsions P, P’ on Q
(dual/operator norm = total variation distance):

d(P,P)= sup |P(X)—P'(X)|
X:Q—[-1,1]
=2 sup |P(A) — P(A)]
ACQ
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distances

» distance between two linear previsions P, P’ on Q
(dual/operator norm = total variation distance):

d(P,P)= sup |P(X)—P'(X)|
X:Q—[-1,1]
=2 sup |P(A) — P(A)]
ACQ

» distance between two (coherent) lower previsions P, P’ on Q
(Hausdorff distance = “dual /operator norm”):

PeM(P) P'EM(P’) PreM(p’) PEM(E

= sup |E(X)fB'(X)’
X:Q—[-1,1]

d(P,P'):max{ sup inf _d(P,P'), sup inf
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continuity

» Bayesian updating is continuous on all linear previsions P with P(A) > 0
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» Bayesian updating is continuous on all linear previsions P with P(A) > 0
> regular updating is continuous on all lower previsions P with P(A) > 0

» regular updating is not continuous on all lower previsions P with P(A) > 0,
apart if A= Q or |A| =1 (and the same holds for natural extension)
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continuity

» Bayesian updating is continuous on all linear previsions P with P(A) > 0
> regular updating is continuous on all lower previsions P with P(A) > 0

» regular updating is not continuous on all lower previsions P with P(A) > 0,
apart if A= Q or |A| =1 (and the same holds for natural extension)

» [-cut updating is continuous on all lower previsions P with P(A) > 0,
for each 8 € (0,1)
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hierarchical model

> a likelihood function /ik’ on the set P of all linear previsions on Q is
described by its normal hypograph

{(P,B) € P x [0,1] : B suplik’ < lik'(P)}
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hierarchical model

v

a likelihood function /ik’ on the set P of all linear previsions on Q is
described by its normal hypograph

{(P,B) e P x[0,1]: B suplik' < lik'(P)}

> hierarchical updating: ik’ — lik"(P") o< suppcp. p(.| a)=p: lik'(P) lik(P)
when lik’ lik # 0

» distance between two likelihood functions /ik’, lik” on P: Hausdorff
distance between their normal hypographs, with respect to a product metric
on P x [0,1]

» hierarchical updating is continuous on all likelihood functions /ik’ with
lik" lik £ 0
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