Graphical comparison of imprecise methods

Marco Cattaneo Department of Statistics, LMU Munich

WPMSIIP 2012, Munich, Germany 12 September 2012

imprecise methods are methods yielding set-valued results

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
------------------	--------------------------

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
confidence interval/region	confidence level $1-lpha$

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
confidence interval/region	confidence level $1-lpha$
likelihood-based confidence interval/region	cutoff point eta

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
confidence interval/region	confidence level $1-lpha$
likelihood-based confidence interval/region	cutoff point eta
IDM-based credal classifier	number of hidden instances s

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
confidence interval/region	confidence level $1 - \alpha$
likelihood-based confidence interval/region	cutoff point β
IDM-based credal classifier	number of hidden instances <i>s</i>
arepsilon-contaminated IDM-based credal classifier	s and $arepsilon$

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
confidence interval/region	confidence level $1 - \alpha$
likelihood-based confidence interval/region	cutoff point β
IDM-based credal classifier	number of hidden instances s
arepsilon-contaminated IDM-based credal classifier	s and $arepsilon$
likelihood-based credal classifier	cutoff point β

- imprecise methods are methods yielding set-valued results
- the amount of imprecision of the methods is usually controlled by (at least) a parameter
- examples:

imprecise method	imprecision parameter(s)
confidence interval/region	confidence level $1 - \alpha$
likelihood-based confidence interval/region	cutoff point β
IDM-based credal classifier	number of hidden instances s
arepsilon-contaminated IDM-based credal classifier	s and $arepsilon$
likelihood-based credal classifier	cutoff point β
likelihood-based imprecise regression	cutoff point eta (and $arepsilon$)

it is usually possible to evaluate numerically two qualities of imprecise methods: accuracy and (im)precision

- it is usually possible to evaluate numerically two qualities of imprecise methods: accuracy and (im)precision
- reducing these two dimensions of the numerical evaluation to a single one is problematic

- it is usually possible to evaluate numerically two qualities of imprecise methods: accuracy and (im)precision
- reducing these two dimensions of the numerical evaluation to a single one is problematic

imprecise method	accuracy	imprecision
------------------	----------	-------------

- it is usually possible to evaluate numerically two qualities of imprecise methods: accuracy and (im)precision
- reducing these two dimensions of the numerical evaluation to a single one is problematic

imprecise method	accuracy	imprecision
confidence interval/region	coverage probability	expected length/volume

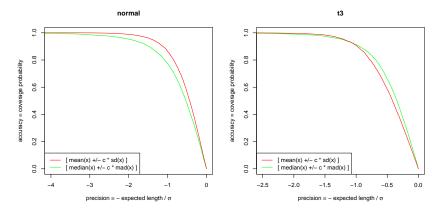
- it is usually possible to evaluate numerically two qualities of imprecise methods: accuracy and (im)precision
- reducing these two dimensions of the numerical evaluation to a single one is problematic

imprecise method	accuracy	imprecision
confidence interval/region	coverage probability	expected length/volume
credal classifier	(global) accuracy	average number of classes

- it is usually possible to evaluate numerically two qualities of imprecise methods: accuracy and (im)precision
- reducing these two dimensions of the numerical evaluation to a single one is problematic

imprecise method	accuracy	imprecision
confidence interval/region	coverage probability	expected length/volume
credal classifier	(global) accuracy	average number of classes
imprecise regression	coverage probability	expected volume

graphical comparison


for each imprecise method, plot the pair (accuracy, precision) as a function of the imprecision parameter(s)

graphical comparison

- for each imprecise method, plot the pair (accuracy, precision) as a function of the imprecision parameter(s)
- example: confidence interval for the mean of 10 normally/t₃ distributed observations (with unknown variance σ²)

graphical comparison

- for each imprecise method, plot the pair (accuracy, precision) as a function of the imprecision parameter(s)
- example: confidence interval for the mean of 10 normally/t₃ distributed observations (with unknown variance σ²)

