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(Simple) linear LIR with precise data

� (X1,Y1), . . . , (Xn,Yn)

with (Xi ,Yi )
i.i.d.∼ P

� simple linear regression:

Yi = f (Xi ) = a + b Xi
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(Simple) linear LIR with precise data

� (X1,Y1), . . . , (Xn,Yn)

with (Xi ,Yi )
i.i.d.∼ P

� simple linear regression:

Yi = f (Xi ) = a + b Xi

� residuals:

Rf ,i = |Yi − f (Xi )|

� loss function p-quantile:

lp(f ) = QRf ,p, p ∈ (0, 1)

� account for statistical
uncertainty:

Cf ,p,β likelihood-based
confidence region with
cutoff point β ∈ (0, 1)
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� result U : set of
plausible functions
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(Simple) linear LIR with interval data

� (X ∗1 ,Y
∗
1 ), . . . , (X ∗n ,Y

∗
n )

where X ∗i =
[
X i ,X i

]
and Y ∗i =

[
Y i ,Y i

]

� with V ∗i = X ∗i × Y ∗i
((Xi ,Yi ),V

∗
i )

i.i.d.∼ P

such that for ε ∈ [0, 1]

P((Xi ,Yi ) /∈ V ∗i ) ≤ ε
� simple linear regression:

Yi = f (Xi ) = a + b Xi
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(Simple) linear LIR with interval data

� ((Xi ,Yi ),V
∗
i )

i.i.d.∼ P , P ∈ Pε = {P : P((Xi ,Yi ) /∈ V ∗i ) ≤ ε} , ε ∈ [0, 1]

� Yi = f (Xi ) , f ∈ F =

{
fa,b :

R → R
X 7→ a + b X

, a, b ∈ R
}

� observations v∗1 , . . . , v
∗
n induce (normalized) profile likelihood function for the

p-quantile of the distribution of Rf for each f ∈ F
� r f ,i = min

(x,y)∈[x i ,x i ]×[y
i
,y i ]
|y − f (x)| , r f ,i = sup

(x,y)∈[x i ,x i ]×[y
i
,y i ]

|y − f (x)|

� 0 = r f ,(0), . . . , r f ,(dn(p−ε)e), r f ,(bn(p+ε)c+1), . . . , r f ,(n+1) = +∞

� Cf = [r f ,(k+1), r f ,(k)] , values of k , k ∈ N ∪ {0} depend on n, p, β, ε

� LIR result U = {f ∈ F : r f ,(k+1) ≤ qLRM} , where qLRM = inf
f∈F

r f ,(k)

� further details in: M. Cattaneo, A. Wiencierz (2012). Likelihood-based
Imprecise Regression. Int. J. Approx. Reasoning 53. 1137-1154.
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p-quantile of the distribution of Rf for each f ∈ F
� r f ,i = min

(x,y)∈[x i ,x i ]×[y
i
,y i ]
|y − f (x)| , r f ,i = sup

(x,y)∈[x i ,x i ]×[y
i
,y i ]

|y − f (x)|

� 0 = r f ,(0), . . . , r f ,(dn(p−ε)e), r f ,(bn(p+ε)c+1), . . . , r f ,(n+1) = +∞

� Cf = [r f ,(k+1), r f ,(k)] , values of k , k ∈ N ∪ {0} depend on n, p, β, ε

� LIR result U = {f ∈ F : r f ,(k+1) ≤ qLRM} , where qLRM = inf
f∈F

r f ,(k)

� further details in: M. Cattaneo, A. Wiencierz (2012). Likelihood-based
Imprecise Regression. Int. J. Approx. Reasoning 53. 1137-1154.
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Statistical properties of the LIR method

� robustness:

breakdown-point ε∗ = min{k,n−k}
n

n→∞−→ min{p, 1− p} − ε
� exact confidence level of Cf :

P(Cf 3 QRf
) ≥



k∑
k=k+1

(
n
k

)
pk (1− p)n−k ε = 0

k∑
k=k+1

(
n
k

)
(p + ε)k (1− (p + ε))n−k ε > 0, p ≤ 0.5

k∑
k=k+1

(
n
k

)
(p − ε)k (1− (p − ε))n−k ε > 0, p > 0.5

� confidence level of the result U :

We don’t know yet.

� consistency of U :

What does that mean? → tomorrow
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Implementation: Exact algorithm for simple linear LIR

� aim: determine the set
of undominated
functions U = {f ∈ F :
r f ,(k+1) ≤ qLRM}

� 1st step: find qLRM
� B fLRM ,qLRM

(blue dashed
lines) is the thinnest
band containing at least
k imprecise data

� here β = 0.8, p = 0.6,
n = 17 , and k = 12
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Implementation: Exact algorithm - Part 1

� some of the included k
imprecise observations
touch the borders of
B fLRM ,qLRM

in 3 different
points

� bLRM can be any slope
determined by the
corresponding corner
points of 2 imprecise
data or 0

� B is the set of 4
(
n
2

)
+ 1

possible values for bLRM

� for each b ∈ B
determine ab ∈ R such
that r fab,b,(k)

is minimal
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Implementation: Exact algorithm - Part 1

for each b ∈ B
� consider transformed data z∗i = [z i , z i ] with

z i =

{
y
i
− b x i , b > 0

y
i
− b x i , b ≤ 0

and z i =

{
y i − b x i , b > 0
y i − b x i , b ≤ 0

� determine the shortest of the n − k + 1 intervals of the form (z [j] − z (j)) ,

where z [j] is the kth smallest value among the zb,i such that zb,i ≥ zb,(j)

� the length of the shortest interval corresponds to the bandwidth

� the corresponding intercept ab is given by the midpoint of this interval

⇒ qLRM =
1

2
min

(b,j)∈B×{1,...,n−k+1}
(zb,[j] − zb,(j))
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Implementation: Exact algorithm - Part 2

� step 2: determine U

� if f ∈ U , then B f ,qLRM

intersects at least k + 1
imprecise data

� here k = 8

� for each b ∈ B
determine set Ab ⊂ R
such that
{fa,b : a ∈ Ab} ⊂ U

� Ab =

n−k⋃
j=1

[z (k+j)−qLRM ,
z (j) + qLRM ] −2 0 2 4 6
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Implementation: Exact algorithm - Part 2

� step 2: determine U
� if f ∈ U , then B f ,qLRM

intersects at least k + 1
imprecise data

� here k = 8

� for each b ∈ B
determine set Ab ⊂ R
such that
{fa,b : a ∈ Ab} ⊂ U

� Ab =

n−k⋃
j=1

[z (k+j)−qLRM ,
z (j) + qLRM ]

−2 0 2 4 6

0

1

2

3

4

5

6

 

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

A. Wiencierz (LMU Munich) linLIR WPMSIIP 5, Sep. 11, 2012 14 / 20



Implementation: Exact algorithm - Part 2

� step 2: determine U
� if f ∈ U , then B f ,qLRM

intersects at least k + 1
imprecise data

� here k = 8

� for each b ∈ B
determine set Ab ⊂ R
such that
{fa,b : a ∈ Ab} ⊂ U

� Ab =

n−k⋃
j=1

[z (k+j)−qLRM ,
z (j) + qLRM ] −2 0 2 4 6

0

1

2

3

4

5

6

 

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

A. Wiencierz (LMU Munich) linLIR WPMSIIP 5, Sep. 11, 2012 14 / 20



Implementation: Exact algorithm - Result

⇒ U =

fa,b : b ∈ R and a ∈
n−k⋃
j=1

[zb,(k+j) − qLRM , zb,(j) + qLRM ]



� U contains all functions that are plausible relations of X and Y in the light of
the imprecise observations

� exact algorithm for the simple linear LIR analysis with interval data

� the presented algorithm has computational complexity O(n3 log n)

� further details in: M. Cattaneo, A. Wiencierz (2012). On the implementation
of LIR: the case of simple linear regression with interval data. Technical
Report 127. Department of Statistics. LMU Munich.
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R package linLIR

� linLIR: linear Likelihood-based Imprecise Regression

� R package version 1.0-2 is available at CRAN:
http://cran.r-project.org/

� plot 2-dimensional interval data set

� s.linlir function implements the exact algorithm

� further tools to summarize and visualize results
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276

� obtained set of
undominated functions
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276

� obtained set of
undominated functions

� obtained set of
parameters
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Future work

� generalize algorithm to multiple linear regression

� supplement R package

� further investigate statistical properties

� study LIR for more general regression functions
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