Learning from data in Markov models

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

WPMSIIP 2011, Ljubljana, Slovenia 10 September 2011

$$M_{n,ij} = P(X_{n+1} = s_j \mid X_n = s_i)$$

► a Markov chain X₁, X₂,... with a finite set S = {s₁,..., s_k} of possible states is described by its k × k transition matrices M_n (and by the distribution of X₁), where

$$M_{n,ij} = P(X_{n+1} = s_j \mid X_n = s_i)$$

• the Markov chain is homogeneous if $M_n = M$ does not depend on n

$$M_{n,ij} = P(X_{n+1} = s_j \mid X_n = s_i)$$

- ▶ the Markov chain is homogeneous if $M_n = M$ does not depend on *n*
- a (homogeneous) imprecise Markov chain has the transition matrix M replaced by a set M of transition matrices, and can be interpreted in (at least) two different ways:

$$M_{n,ij} = P(X_{n+1} = s_j \mid X_n = s_i)$$

- ▶ the Markov chain is homogeneous if $M_n = M$ does not depend on n
- a (homogeneous) imprecise Markov chain has the transition matrix M replaced by a set M of transition matrices, and can be interpreted in (at least) two different ways:
 - ▶ a homogeneous (precise) Markov chain, for which we only know that $M \in \mathcal{M}$

$$M_{n,ij} = P(X_{n+1} = s_j \mid X_n = s_i)$$

- ▶ the Markov chain is homogeneous if $M_n = M$ does not depend on n
- a (homogeneous) imprecise Markov chain has the transition matrix M replaced by a set M of transition matrices, and can be interpreted in (at least) two different ways:
 - ▶ a homogeneous (precise) Markov chain, for which we only know that $M \in \mathcal{M}$
 - ▶ an inhomogeneous (precise) Markov chain, for which we only know that $M_n \in \mathcal{M}$

▶ assume that we observe some states X_{i1} = x_{i1},..., X_{in} = x_{in} and we consider them as realizations from:

- ▶ assume that we observe some states X_{i1} = x_{i1},..., X_{in} = x_{in} and we consider them as realizations from:
 - \blacktriangleright a homogeneous (precise) Markov chain: then we learn something about the transition matrix M

- ▶ assume that we observe some states X_{i1} = x_{i1},..., X_{in} = x_{in} and we consider them as realizations from:
 - \blacktriangleright a homogeneous (precise) Markov chain: then we learn something about the transition matrix M
 - ► an inhomogeneous (precise) Markov chain (without additional assumptions): then we do not learn (almost) anything about the transition matrices M_n

- ▶ assume that we observe some states X_{i1} = x_{i1},..., X_{in} = x_{in} and we consider them as realizations from:
 - \blacktriangleright a homogeneous (precise) Markov chain: then we learn something about the transition matrix M
 - ► an inhomogeneous (precise) Markov chain (without additional assumptions): then we do not learn (almost) anything about the transition matrices M_n
 - a (homogeneous) imprecise Markov chain with the first interpretation (i.e., $M \in \mathcal{M}$): then the estimation of \mathcal{M} does not make sense, but we can use an imprecise Markov chain to describe what we have learned about M

- ▶ assume that we observe some states X_{i1} = x_{i1},..., X_{in} = x_{in} and we consider them as realizations from:
 - \blacktriangleright a homogeneous (precise) Markov chain: then we learn something about the transition matrix M
 - ► an inhomogeneous (precise) Markov chain (without additional assumptions): then we do not learn (almost) anything about the transition matrices M_n
 - ▶ a (homogeneous) imprecise Markov chain with the first interpretation (i.e., $M \in M$): then the estimation of M does not make sense, but we can use an imprecise Markov chain to describe what we have learned about M
 - a (homogeneous) imprecise Markov chain with the second interpretation (i.e., $M_n \in \mathcal{M}$): then the estimation of \mathcal{M} would make sense, but we cannot estimate \mathcal{M} without additional assumptions about the amount of imprecision in \mathcal{M}

what we learn (from data) about the transition matrix M is described by the (normalized) likelihood function

$$lik(M) = \frac{P_M(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}{\max_{M'} P_{M'}(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}$$

what we learn (from data) about the transition matrix M is described by the (normalized) likelihood function

$$lik(M) = \frac{P_M(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}{\max_{M'} P_{M'}(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}$$

a possibility to obtain an imprecise Markov chain (with the first interpretation, i.e., M ∈ M) describing what we have learned about M is to choose as set M of transition matrices the likelihood-based confidence region for M with a certain cutoff point β ∈ (0, 1):

$$\mathcal{M} = \{M : lik(M) > \beta\}$$

what we learn (from data) about the transition matrix M is described by the (normalized) likelihood function

$$lik(M) = \frac{P_M(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}{\max_{M'} P_{M'}(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}$$

▶ a possibility to obtain an imprecise Markov chain (with the first interpretation, i.e., $M \in \mathcal{M}$) describing what we have learned about M is to choose as set \mathcal{M} of transition matrices the likelihood-based confidence region for M with a certain cutoff point $\beta \in (0, 1)$:

$$\mathcal{M} = \{M : lik(M) > \beta\}$$

 prior ignorance, learning, and coherence are incompatible: the above idea relaxes coherence during learning (in the sense that the GBR is not satisfied)

what we learn (from data) about the transition matrix M is described by the (normalized) likelihood function

$$lik(M) = \frac{P_M(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}{\max_{M'} P_{M'}(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n})}$$

a possibility to obtain an imprecise Markov chain (with the first interpretation, i.e., M ∈ M) describing what we have learned about M is to choose as set M of transition matrices the likelihood-based confidence region for M with a certain cutoff point β ∈ (0, 1):

$$\mathcal{M} = \{M : lik(M) > \beta\}$$

- prior ignorance, learning, and coherence are incompatible: the above idea relaxes coherence during learning (in the sense that the GBR is not satisfied)
- lower and upper previsions corresponding to the imprecise model M (or more generally, lower and upper bounds on M for any function of M) can be calculated by a simple algorithm (combining Lagrange multipliers and EM)

▶ data:
$$X_1 = 1$$

 $P(X_{50} = 1 | data) = [0, 1]$ logit length: ∞
 $P(X_{50} = X_{51} = 1 | data) = [0, 1]$ logit length: ∞

▶ data:
$$X_1 = 1$$

 $P(X_{50} = 1 | data) = [0, 1]$ logit length: ∞
 $P(X_{50} = X_{51} = 1 | data) = [0, 1]$ logit length: ∞

▶ data:
$$X_1 \cdots X_{20} = 11100111100011011110$$

 $P(X_{50} = 1 | data) = [0.30, 0.85]$ logit length: 2.58
 $P(X_{50} = X_{51} = 1 | data) = [0.16, 0.75]$ logit length: 2.76

▶ data:
$$X_1 = 1$$

 $P(X_{50} = 1 | data) = [0, 1]$ logit length: ∞
 $P(X_{50} = X_{51} = 1 | data) = [0, 1]$ logit length: ∞

data:
$$X_1 \cdots X_{20} = 11100111100011011110$$
 $P(X_{50} = 1 \mid \text{data}) = [0.30, 0.85]$ logit length: 2.58
 $P(X_{50} = X_{51} = 1 \mid \text{data}) = [0.16, 0.75]$ logit length: 2.76

▶ data:
$$X_1 = 1$$

 $P(X_{50} = 1 | data) = [0, 1]$ logit length: ∞
 $P(X_{50} = X_{51} = 1 | data) = [0, 1]$ logit length: ∞

> data:
$$X_1 \cdots X_{20} = 11100111100011011110$$

 $P(X_{50} = 1 | data) = [0.30, 0.85]$ logit length: 2.58
 $P(X_{50} = X_{51} = 1 | data) = [0.16, 0.75]$ logit length: 2.76

- > data (m: MAR): $X_1 \cdots X_{40} = 11100111 mm 001101111 m100101110 m11110 m1001$ $P(X_{50} = 1 | data) = [0.46, 0.80] logit length: 1.55$

▶ data:
$$X_1 = 1$$

 $P(X_{50} = 1 | data) = [0, 1]$ logit length: ∞
 $P(X_{50} = X_{51} = 1 | data) = [0, 1]$ logit length: ∞

> data:
$$X_1 \cdots X_{20} = 11100111100011011110$$

 $P(X_{50} = 1 | data) = [0.30, 0.85]$ logit length: 2.58
 $P(X_{50} = X_{51} = 1 | data) = [0.16, 0.75]$ logit length: 2.76

- ► data (*m*: MAR): $X_1 \cdots X_{40} = 11100111 mm 001101111 m100101110 m11110 m1001$ $P(X_{50} = 1 | data) = [0.46, 0.80]$ logit length: 1.55
- ► data (*m*: MAR): $X_1 \cdots X_{40} = 11 mm 0111 mmm 0110 m11 mm 1001 m1110 m11 m1 mm 1001$ $P(X_{50} = 1 | data) = [0.50, 0.85]$ logit length: 1.73

learning from data with prior (near) ignorance is fundamental for statistical applications of imprecise models

- learning from data with prior (near) ignorance is fundamental for statistical applications of imprecise models
- general imprecise approach, easily applied to various statistical models (e.g., continuous-time Markov processes)

- learning from data with prior (near) ignorance is fundamental for statistical applications of imprecise models
- general imprecise approach, easily applied to various statistical models (e.g., continuous-time Markov processes)
- very promising algorithm for imprecise inference in discrete (or continuous nonparametric) models

- learning from data with prior (near) ignorance is fundamental for statistical applications of imprecise models
- general imprecise approach, easily applied to various statistical models (e.g., continuous-time Markov processes)
- very promising algorithm for imprecise inference in discrete (or continuous nonparametric) models
- can the algorithm be useful for calculating imprecise previsions in general?