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Markov chains

I a Markov chain X1,X2, . . . with a finite set S = {s1, . . . , sk} of possible
states is described by its k × k transition matrices Mn (and by the
distribution of X1), where

Mn,ij = P(Xn+1 = sj |Xn = si )

I the Markov chain is homogeneous if Mn = M does not depend on n

I a (homogeneous) imprecise Markov chain has the transition matrix M
replaced by a set M of transition matrices, and can be interpreted in (at
least) two different ways:

I a homogeneous (precise) Markov chain, for which we only know that
M ∈ M

I an inhomogeneous (precise) Markov chain, for which we only know that
Mn ∈ M
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learning from data

I assume that we observe some states Xi1 = xi1 , . . . ,Xin = xin and we
consider them as realizations from:

I a homogeneous (precise) Markov chain: then we learn something about
the transition matrix M

I an inhomogeneous (precise) Markov chain (without additional
assumptions): then we do not learn (almost) anything about the transition
matrices Mn

I a (homogeneous) imprecise Markov chain with the first interpretation (i.e.,
M ∈ M): then the estimation of M does not make sense, but we can use
an imprecise Markov chain to describe what we have learned about M

I a (homogeneous) imprecise Markov chain with the second interpretation
(i.e., Mn ∈ M): then the estimation of M would make sense, but we
cannot estimate M without additional assumptions about the amount of
imprecision in M
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imprecise inference
I what we learn (from data) about the transition matrix M is described by

the (normalized) likelihood function

lik(M) =
PM(Xi1 = xi1 , . . . ,Xin = xin)

maxM′ PM′(Xi1 = xi1 , . . . ,Xin = xin)

I a possibility to obtain an imprecise Markov chain (with the first
interpretation, i.e., M ∈ M) describing what we have learned about M is
to choose as set M of transition matrices the likelihood-based confidence
region for M with a certain cutoff point β ∈ (0, 1):

M = {M : lik(M) > β}

I prior ignorance, learning, and coherence are incompatible: the above idea
relaxes coherence during learning (in the sense that the GBR is not
satisfied)

I lower and upper previsions corresponding to the imprecise model M (or
more generally, lower and upper bounds on M for any function of M) can
be calculated by a simple algorithm (combining Lagrange multipliers and
EM)
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example: binary Markov chain (S = {0, 1}) with β = 0.15

I data: X1 = 1
P(X50 = 1 | data) = [0, 1] logit length: ∞
P(X50 = X51 = 1 | data) = [0, 1] logit length: ∞

I data: X1 · · ·X20 = 11100111100011011110
P(X50 = 1 | data) = [0.30, 0.85] logit length: 2.58
P(X50 = X51 = 1 | data) = [0.16, 0.75] logit length: 2.76

I data: X1 · · ·X40 = 1110011110001101111010010111011111001001
P(X50 = 1 | data) = [0.45, 0.76] logit length: 1.35
P(X50 = X51 = 1 | data) = [0.21, 0.61] logit length: 1.77

I data (m: MAR):
X1 · · ·X40 = 11100111mm001101111m100101110m11110m1001
P(X50 = 1 | data) = [0.46, 0.80] logit length: 1.55

I data (m: MAR):
X1 · · ·X40 = 11mm0111mmm0110m11mm1001m1110m11m1mm1001
P(X50 = 1 | data) = [0.50, 0.85] logit length: 1.73
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conclusion

I learning from data with prior (near) ignorance is fundamental for
statistical applications of imprecise models

I general imprecise approach, easily applied to various statistical models
(e.g., continuous-time Markov processes)

I very promising algorithm for imprecise inference in discrete (or continuous
nonparametric) models

I can the algorithm be useful for calculating imprecise previsions in general?
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