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the fundamental problem of statistical inference

I given the realizations of the independent random variables X1, . . . ,Xn

with Xi ∼ Ber(p), estimate p ∈ [0, 1]

I the estimation is unproblematic when n is sufficiently large

I given the realizations of the independent random variables X1, . . . ,Xn

with Xi ∼ Ber(pi ) for some pi ∈ [p, p], estimate [p, p] ⊆ [0, 1]

I for example, the estimation of the transition matrix of an imprecise
Markov chain is a strictly related problem

I note that the IDM model describes some imprecise knowledge about the
precise probability p (for instance, in the IDM model the lower probability
of Xi = Xi+1 = 1 is in general not p2)

I no estimator of [p, p] can be consistent under all sequences (pi ) ∈ [p, p]N,
and the same holds for the estimators of [inf pi , sup pi ] or
[lim inf pi , lim sup pi ] (since for example the deterministic model with
pi = xi can never be excluded)
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maximum likelihood estimation
I basic question: given two imprecise probability models P1,P2 and the

observed event A, which one of the two models was best in forecasting A?

I in a certain sense, the likelihood function induced by the data A on a set
of imprecise probability models is bidimensional: lik(P) =

(
P(A),P(A)

)
I when the set of imprecise probability models is large enough, the “upper

likelihood function” lik(P) = P(A) is maximized by the vacuous model,
while the “lower likelihood function” lik(P) = P(A) is maximized by the
precise ML estimate

I the weighted geometric mean likα(P) = lik(P)α lik(P)1−α of the upper
and lower likelihood functions is an interesting compromise, where
α ∈ [0, 1] can perhaps be interpreted as a degree of optimism; of
particular interest is the case with α = 1

2 , since

lik 1
2
(P1)

lik 1
2
(P2)

=

√
P1(A)

P2(A)

P1(A)

P2(A)

is the geometric mean of the likelihood ratio most favorable to P1 and
the one most favorable to P2
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imprecise Bernoulli problem

I maximum likα estimates:

α ≤ 1
2 ⇒ p̂

α
= p̂α = p̂ =

n1
n0 + n1

α > 1
2 ⇒ p̂

α
=

(1− α) n1
α n0 + (1− α) n1

, p̂α =
α n1

(1− α) n0 + α n1

I α ≥ 1
2 ⇒ [logit p̂

α
, logit p̂α] = [logit p̂ ± logitα]

I in the case with k categories, the maximum likα estimates are precise if
and only if α ≤ 1

k
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