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naive classification

I naive assumption: the features F1, . . . ,Fk are independent given the
class C ;

let {Pθ : θ ∈ Θ} be the set of all probability distributions for
(C ,F1, . . . ,Fk) satisfying the naive assumption

I a training dataset induces the likelihood function lik on Θ defined by

lik(θ) ∝ Pθ(dataset) for all θ ∈ Θ

I to study the preference between the classifications C = a and C = b for
a new object with observed features Fi1 = fi1 , . . . ,Fih = fih , we can
introduce the function g on Θ defined by

g(θ) =
Pθ(C = a |Fi1 = fi1 , . . . ,Fih = fih)

Pθ(C = b |Fi1 = fi1 , . . . ,Fih = fih)
for all θ ∈ Θ

I naive classifiers differ in the way in which they use lik to evaluate g :
I naive precise classifiers: g(θ̂), where θ̂ ∈ Θ is a precise estimate of θ (for

example: ML, Bayesian)

I naive credal classifier: {g(θ) : θ ∈ C}, where C ⊆ Θ is the IDM imprecise
estimate of θ

I naive hierarchical classifier: {g(θ) : θ ∈ Θ, lik(θ) > β}, where β ∈ [0, 1[
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naive hierarchical classifier

I likelihood-based confidence region for g(θ) with cutoff point β ∈ [0, 1[ :

{g(θ) : θ ∈ Θ, lik(θ) > β}

= {x ∈ [0,+∞] : likg (x) > β},

where likg is the profile likelihood function on [0,+∞] induced by lik
and g :

likg (x) = sup
θ∈Θ : g(θ)=x

lik(θ)

I basic idea for calculating likg : if θ = θα maximizes [g(θ)]α lik(θ) over all
θ ∈ Θ for some α ∈ R, then it also maximizes lik(θ) over all θ ∈ Θ such
that g(θ) = g(θα), and therefore (g(θα), lik(θα)) is a point in the graph
of likg ; in fact, θα is the ML estimate of θ
with α-modified data, and by varying α,
the whole graph of likg is obtained
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using all the available information

I observed data:

(C (1),F (1)), . . . , (C (n),F (n))︸ ︷︷ ︸
training dataset

, (C (n+1),F (n+1)), . . . , (C (n+m),F (n+m))︸ ︷︷ ︸
objects to be classified

I the likelihood function lik on Θ used by the naive classifiers is induced by
the training dataset, without considering the information provided by the
observations of F (n+1), . . . ,F (n+m)

I when m = 1, the whole information provided by the observation of F (n+1)

is automatically used by the (precise or imprecise) Bayesian classifiers,
but not by the likelihood-based ones
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example of naive classification

class ∈ {a, b}

yyssssssssss

''OOOOOOOOOOO

color ∈ {red , blue} size ∈ {BIG , small}

complete training dataset:

class # #red #BIG

a 50 1 1
b 50 1 50

P(class = a | color = red , size = BIG ):

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

ML estimate with all the available information: 0.010
ML estimate without considering F (n+1): 0.020
Bayesian estimate with uniform priors: 0.038
IDM estimate with s = 2: [0.0066, 0.15]
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example of naive classification with zero counts

class ∈ {a, b}

yyssssssssss

''OOOOOOOOOOO

color ∈ {red , blue} size ∈ {BIG , small}

complete training dataset:

class # #red #BIG

a 50 1 1
b 50 0 50

P(class = a | color = red , size = BIG ):

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

ML estimate with all the available information: 0.021
ML estimate without considering F (n+1): 1
Bayesian estimate with uniform priors: 0.073
IDM estimate with s = 2: [0.0099, 1]
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example of naive classification with zero counts

class ∈ {a, b}

yyssssssssss

''OOOOOOOOOOO

color ∈ {red , blue} size ∈ {BIG , small}

complete training dataset:

class # #red #BIG

a 50 0 1
b 50 0 50

P(class = a | color = red , size = BIG ):

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

ML estimate with all the available information: 0
ML estimate without considering F (n+1): [0, 1]
Bayesian estimate with uniform priors: 0.038
IDM estimate with s = 2: [0, 1]
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