Naive classifiers and zero counts

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

> WPMSIIP 2010, Durham, UK 9 September 2010

▶ naive assumption: the features F₁,..., F_k are independent given the class C;

naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption

- ▶ naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption
- ▶ a training dataset induces the likelihood function *lik* on Θ defined by

 $\mathit{lik}(heta) \propto P_{ heta}(\mathsf{dataset}) \qquad \mathsf{for all} \ heta \in \Theta$

- naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption
- > a training dataset induces the likelihood function *lik* on Θ defined by

$$lik(heta) \propto P_{ heta}(ext{dataset}) \qquad ext{for all } heta \in \Theta$$

► to study the **preference** between the classifications C = a and C = b for a new object with observed features F_{i1} = f_{i1},..., F_{ib} = f_{ib}, we can introduce the function g on Θ defined by

$$g(\theta) = \frac{P_{\theta}(C = a \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})}{P_{\theta}(C = b \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})} \qquad \text{for all } \theta \in \Theta$$

- ▶ naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption
- > a training dataset induces the likelihood function *lik* on Θ defined by

$$\mathit{lik}(heta) \propto P_{ heta}(\mathsf{dataset}) \qquad \mathsf{for all} \ heta \in \Theta$$

► to study the **preference** between the classifications C = a and C = b for a new object with observed features F_{i1} = f_{i1},..., F_{ib} = f_{ib}, we can introduce the function g on Θ defined by

$$g(\theta) = \frac{P_{\theta}(C = a \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})}{P_{\theta}(C = b \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})} \qquad \text{for all } \theta \in \Theta$$

▶ naive classifiers differ in the way in which they use *lik* to evaluate *g*:

- ▶ naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption
- > a training dataset induces the likelihood function *lik* on Θ defined by

$$\mathit{lik}(heta) \propto P_{ heta}(\mathsf{dataset}) \qquad \mathsf{for all} \ heta \in \Theta$$

► to study the **preference** between the classifications C = a and C = b for a new object with observed features F_{i1} = f_{i1},..., F_{ib} = f_{ib}, we can introduce the function g on Θ defined by

$$g(\theta) = \frac{P_{\theta}(C = a \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})}{P_{\theta}(C = b \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})} \qquad \text{for all } \theta \in \Theta$$

- ▶ naive classifiers differ in the way in which they use *lik* to evaluate *g*:
 - naive precise classifiers: g(θ̂), where θ̂ ∈ Θ is a precise estimate of θ (for example: ML, Bayesian)

- ▶ naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption
- > a training dataset induces the likelihood function *lik* on Θ defined by

$$\mathit{lik}(heta) \propto P_{ heta}(\mathsf{dataset}) \qquad \mathsf{for all} \ heta \in \Theta$$

► to study the **preference** between the classifications C = a and C = b for a new object with observed features F_{i1} = f_{i1},..., F_{ib} = f_{ib}, we can introduce the function g on Θ defined by

$$g(\theta) = \frac{P_{\theta}(C = a \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})}{P_{\theta}(C = b \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})} \qquad \text{for all } \theta \in \Theta$$

- ▶ naive classifiers differ in the way in which they use *lik* to evaluate g:
 - naive precise classifiers: g(θ̂), where θ̂ ∈ Θ is a precise estimate of θ (for example: ML, Bayesian)
 - ▶ naive credal classifier: $\{g(\theta) : \theta \in C\}$, where $C \subseteq \Theta$ is the IDM imprecise estimate of θ

- ▶ naive assumption: the features F₁,..., F_k are **independent** given the class C; let {P_θ : θ ∈ Θ} be the set of **all** probability distributions for (C, F₁,..., F_k) satisfying the naive assumption
- > a training dataset induces the likelihood function *lik* on Θ defined by

$$\mathit{lik}(heta) \propto \mathit{P}_{ heta}(\mathsf{dataset}) \qquad \mathsf{for all} \ heta \in \Theta$$

▶ to study the **preference** between the classifications C = a and C = b for a new object with observed features F_{i1} = f_{i1},..., F_{ib} = f_{ib}, we can introduce the function g on Θ defined by

$$g(\theta) = \frac{P_{\theta}(C = a \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})}{P_{\theta}(C = b \mid F_{i_1} = f_{i_1}, \dots, F_{i_h} = f_{i_h})} \qquad \text{for all } \theta \in \Theta$$

- ▶ naive classifiers differ in the way in which they use *lik* to evaluate *g*:
 - naive precise classifiers: g(θ̂), where θ̂ ∈ Θ is a precise estimate of θ (for example: ML, Bayesian)
 - ▶ naive credal classifier: $\{g(\theta) : \theta \in C\}$, where $C \subseteq \Theta$ is the IDM imprecise estimate of θ
 - ▶ naive hierarchical classifier: $\{g(\theta) : \theta \in \Theta, lik(\theta) > \beta\}$, where $\beta \in [0, 1[$

► likelihood-based confidence region for $g(\theta)$ with cutoff point $\beta \in [0, 1[:$

 $\{g(\theta): \theta \in \Theta, \ \textit{lik}(\theta) > \beta\}$

▶ likelihood-based confidence region for $g(\theta)$ with cutoff point $\beta \in [0, 1[:$

 $\{g(\theta): \theta \in \Theta, \ \text{lik}(\theta) > \beta\} = \{x \in [0, +\infty]: \ \text{lik}_g(x) > \beta\},\$

where lik_g is the **profile likelihood** function on $[0, +\infty]$ induced by *lik* and *g*:

$$\mathit{lik}_{g}(x) = \sup_{\theta \in \Theta \,:\, g(\theta) = x} \mathit{lik}(\theta)$$

▶ likelihood-based confidence region for $g(\theta)$ with cutoff point $\beta \in [0, 1[:$

$$\{g(\theta): \theta \in \Theta, \ lik(\theta) > \beta\} = \{x \in [0, +\infty]: lik_g(x) > \beta\},\$$

where lik_g is the **profile likelihood** function on $[0, +\infty]$ induced by *lik* and *g*:

$$lik_g(x) = \sup_{\theta \in \Theta : g(\theta) = x} lik(\theta)$$

▶ basic idea for calculating lik_g : if $\theta = \theta_\alpha$ maximizes $[g(\theta)]^\alpha lik(\theta)$ over all $\theta \in \Theta$ for some $\alpha \in \mathbb{R}$, then it also maximizes $lik(\theta)$ over all $\theta \in \Theta$ such that $g(\theta) = g(\theta_\alpha)$, and therefore $(g(\theta_\alpha), lik(\theta_\alpha))$ is a point in the graph of lik_g ;

▶ likelihood-based confidence region for $g(\theta)$ with cutoff point $\beta \in [0, 1[:$

$$\{g(\theta): \theta \in \Theta, \ lik(\theta) > \beta\} = \{x \in [0, +\infty]: lik_g(x) > \beta\},\$$

where lik_g is the **profile likelihood** function on $[0, +\infty]$ induced by *lik* and *g*:

$$lik_g(x) = \sup_{\theta \in \Theta : g(\theta) = x} lik(\theta)$$

▶ basic idea for calculating lik_g : if $\theta = \theta_{\alpha}$ maximizes $[g(\theta)]^{\alpha} lik(\theta)$ over all $\theta \in \Theta$ for some $\alpha \in \mathbb{R}$, then it also maximizes $lik(\theta)$ over all $\theta \in \Theta$ such that $g(\theta) = g(\theta_{\alpha})$, and therefore $(g(\theta_{\alpha}), lik(\theta_{\alpha}))$ is a point in the **graph** of lik_g ; in fact, θ_{α} is the ML estimate of θ with α -modified data, and by varying α , the whole graph of lik_g is obtained

using all the available information

observed data:

 $(C^{(1)}, F^{(1)}), \ldots, (C^{(n)}, F^{(n)}), (C^{(n+1)}, F^{(n+1)}), \ldots, (C^{(n+m)}, F^{(n+m)})$ training dataset objects to be classified

using all the available information

observed data:

$$\underbrace{(C^{(1)}, F^{(1)}), \dots, (C^{(n)}, F^{(n)})}_{\text{training dataset}}, \underbrace{(C^{(n+1)}, F^{(n+1)}), \dots, (C^{(n+m)}, F^{(n+m)})}_{\text{objects to be classified}}$$

► the likelihood function *lik* on Θ used by the naive classifiers is induced by the training dataset, without considering the information provided by the observations of F⁽ⁿ⁺¹⁾,..., F^(n+m)

using all the available information

observed data:

$$\underbrace{(C^{(1)}, F^{(1)}), \dots, (C^{(n)}, F^{(n)})}_{\text{training dataset}}, \underbrace{(C^{(n+1)}, F^{(n+1)}), \dots, (C^{(n+m)}, F^{(n+m)})}_{\text{objects to be classified}}$$

- ► the likelihood function *lik* on Θ used by the naive classifiers is induced by the training dataset, without considering the information provided by the observations of F⁽ⁿ⁺¹⁾,..., F^(n+m)
- ▶ when m = 1, the whole information provided by the observation of F⁽ⁿ⁺¹⁾ is automatically used by the (precise or imprecise) Bayesian classifiers, but not by the likelihood-based ones

example of naive classification

#BIG

1

50

1

1

 $P(class = a \mid color = red, size = BIG)$:

example of naive classification

P(class = a | color = red, size = BIG):

example of naive classification

P(class = a | color = red, size = BIG):

ML estimate with all the available information:0.010ML estimate without considering $F^{(n+1)}$:0.020Bayesian estimate with uniform priors:0.038IDM estimate with s = 2:[0.0066, 0.15]

example of naive classification with zero counts

P(class = a | color = red, size = BIG):

ML estimate with all the available information:0.021ML estimate without considering $F^{(n+1)}$:1Bayesian estimate with uniform priors:0.073IDM estimate with s = 2:[0.0099, 1]

example of naive classification with zero counts

P(class = a | color = red, size = BIG):

ML estimate with all the available information:0ML estimate without considering $F^{(n+1)}$:[0,1]Bayesian estimate with uniform priors:0.038IDM estimate with s = 2:[0,1]