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likelihood function

I set P of probability measures on (Ω,A)

I each P ∈ P is interpreted as a probabilistic model of the reality
under consideration

I after having observed the event A ∈ A, the likelihood function
lik(P) ∝ P(A) on P describes the relative ability of the models to
forecast the observed data

I log lik(P1)
lik(P2)

is the information for discrimination (or weight of

evidence) in favor of P1 against P2

I in particular, a constant lik describes the case of no information for
discrimination among the probabilistic models in P
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hierarchical model
I the set P of probability measures and the likelihood function lik on

P can be interpreted as the two levels of a hierarchical model of
the reality under consideration

I when an event A ∈ A is observed, the hierarchical model can be
updated as follows:

P  P ′ = {P(· |A) : P ∈ P, P(A) > 0}

lik  lik ′(P ′) ∝ sup
P∈P :P(· |A)=P′

lik(P)P(A) on P ′

I the prior likelihood function lik can describe the information from
past observations, or subjective beliefs (interpreted as the
information from virtual past observations)

I the penalty term in penalized likelihood methods can often be
interpreted as a prior lik

I the choice of a prior lik seems better supported by intuition than the
choice of a prior probability measure: in particular, a constant lik
describes the case of no information (complete ignorance)
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imprecise probability

I the uncertain knowledge about the value g(P) of a function
g : P → G is described by the profile likelihood function

likg (γ) ∝ sup
P∈P : g(P)=γ

lik(P) on G

I example: profile likelihood function
for the probability p of observing at
least 3 successes in the next 5
experiments (Bernoulli trials), after
having observed 38 successes in 50
experiments 0

0.2

0.4

0.6

0.8

1

lik
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p

I normalized likelihood functions are a possible interpretation of
membership functions of fuzzy sets: in this sense, the hierarchical
model is a fuzzy probability measure, and the above graph shows
the membership function of a fuzzy probability value
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likelihood-based decisions
I a decision problem is described by a loss function

L : P ×D → [0,∞), where L(P, d) is the loss incurred by making
the decision d , according to the probabilistic model P

I example: profile likelihood functions
for the losses L(P, d1) and L(P, d2)
(i.e., membership functions for the
fuzzy losses of d1 and d2) 0

0.2

0.4

0.6

0.8

1

lik

2 4 6 8 10L

I maximum likelihood estimation leads to the MLD criterion:

minimize L(P̂ML, d)

I the only likelihood-based decision criterion satisfying some basic
properties is the MPL criterion with α ∈ (0,∞):

minimize sup
P∈P

lik(P)α L(P, d)
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comparison of hierarchical and Bayesian models
I example: P = {P0,P1, . . . ,Pn} and D = {d0, d1}, with

L(P0, d0) = 0 and L(Pi , d0) = 1 for all i ∈ {1, . . . , n},
L(P0, d1) = 1 and L(Pi , d1) = 0 for all i ∈ {1, . . . , n},

I likelihood function lik on P with lik(P0) = c lik(Pi ) for a c > 1
and all i ∈ {1, . . . , n}:
likelihood-based decision criterion ⇒ d0 optimal

I probability measure π on P with π{P0} = c π{Pi} for a c > 1
and all i ∈ {1, . . . , n}:
Bayesian decision criterion ⇒ d1 optimal when n is large enough
(many bad probabilistic models make a good one)

I in the Bayesian approach the probabilistic models are handled as
possible “states of the world” (in particular, they are considered
mutually exclusive)

I basic advantage of the hierarchical model over

I the precise Bayesian model: the ability to describe the state of
complete ignorance

I the imprecise Bayesian model: the ability to get out of the state of
complete ignorance
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hierarchical model as a generalization of IP

I the imprecise Bayesian model can be interpreted as a group of
precise Bayesian experts deciding by unanimity: experts are excluded
from the group only if they gave deterministically wrong forecasts
(that is, they assigned probability 0 to the observed event),
otherwise they are always considered as fully credible (independently
of the quality of their past forecasts)

I in the hierarchical model the credibility of the experts depends on
the relative quality of their past forecasts: the higher the credibility,
the larger the influence on the decision making

I in particular, for the imprecise Bayesian model the state of
complete ignorance corresponds to a group of experts who are
absolutely certain of different things (there is no lack of information:
on the contrary, there is plenty of contradictory information), while
for the hierarchical model the state of complete ignorance
corresponds to the lack of information for evaluating the credibility
of these experts
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robustness

I the updating of the hierarchical model is more robust than the
updating of the imprecise Bayesian model

I example: Ω = {a, b, c} and X = I{a} − I{b},

E (X ) = 0 ⇒ E (X | {a, b}) = 0, but

I imprecise Bayesian model:

−ε ≤ E(X ) ≤ ε ⇒ −1 ≤ E(X | {a, b}) ≤ 1 for all ε > 0

I hierarchical model:

profile likelihood functions
for E(X | {a, b}) when
−ε ≤ E(X ) ≤ ε, for
ε = 0.001 and ε = 0.01
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