Statistical decisions based directly on the likelihood function

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

May 15, 2008

my research

 PhD with Frank Hampel at ETH Zurich (November 2002 – March 2007):

Statistical Decisions Based Directly on the Likelihood Function

http://e-collection.ethz.ch

my research

 PhD with Frank Hampel at ETH Zurich (November 2002 – March 2007):

Statistical Decisions Based Directly on the Likelihood Function

http://e-collection.ethz.ch

 Postdoc with Thomas Augustin at LMU Munich (SNSF Research Fellowship, October 2007 – September 2008):

Decision making on the basis of a probabilistic-possibilistic hierarchical description of uncertain knowledge

The likelihood function is central to statistics, and the most appreciated general methods of statistical inference are based directly on the likelihood function.

- The likelihood function is central to statistics, and the most appreciated general methods of statistical inference are based directly on the likelihood function.
- Wald unified statistics in his theory of decision functions, but the likelihood-based methods do not fit well into this perspective (they are in general suboptimal from the repeated sampling point of view).

- The likelihood function is central to statistics, and the most appreciated general methods of statistical inference are based directly on the likelihood function.
- Wald unified statistics in his theory of decision functions, but the likelihood-based methods do not fit well into this perspective (they are in general suboptimal from the repeated sampling point of view).
- In my thesis the decisions are based directly on the likelihood function, and the likelihood-based inference methods can be obtained as special cases.

- The likelihood function is central to statistics, and the most appreciated general methods of statistical inference are based directly on the likelihood function.
- Wald unified statistics in his theory of decision functions, but the likelihood-based methods do not fit well into this perspective (they are in general suboptimal from the repeated sampling point of view).
- In my thesis the decisions are based directly on the likelihood function, and the likelihood-based inference methods can be obtained as special cases.
- Through a new perspective on the relationships between likelihood-based methods, this approach suggests and justifies new methods based on the likelihood function.

- The likelihood function is central to statistics, and the most appreciated general methods of statistical inference are based directly on the likelihood function.
- Wald unified statistics in his theory of decision functions, but the likelihood-based methods do not fit well into this perspective (they are in general suboptimal from the repeated sampling point of view).
- In my thesis the decisions are based directly on the likelihood function, and the likelihood-based inference methods can be obtained as special cases.
- Through a new perspective on the relationships between likelihood-based methods, this approach suggests and justifies new methods based on the likelihood function.
- The resulting methods share the advantages of the likelihood-based inference methods: they are intuitive, generally applicable, conditional, dependent only on sufficient statistics, equivariant, parametrization invariant, asymptotically optimal (consistent) and efficient, and usually good from the repeated sampling point of view.

analogies

PRF-DATA POST-DATA (random variable X) (X = x observed)BAYESIAN $E_{\pi}[E_{P}[L(P,\delta(X))]]$ $E_{\pi}[lik(P)L(P,d)]$ \leftrightarrow (prior π on \mathcal{P}) (temporal coherence) NON-BAYESIAN $\sup E_P[L(P,\delta(X))]$ $\sup lik(P) L(P, d)$ \leftrightarrow (prior ignorance) $P \in \mathcal{P}$ $P \in \mathcal{P}$ (MPL) (minimax risk)