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the likelihood function

Let P be a set of probability measures on a measurable space (Ω,A).

Each P ∈ P is interpreted as a probabilistic model of the reality under
consideration. The interpretation of probability is not important: for
instance the elements of P can be statistical models, or describe the
forecasts of a group of experts.

When an event A ∈ A is observed, the (normalized) likelihood function

lik : P 7−→ P(A)

supP∈P P(A)

on P describes the relative ability of the probabilistic models in P to
forecast the observed data.

The likelihood function can be interpreted as a measure of the relative
plausibility of the probabilistic models in the light of the observed data
alone.
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running example

The fundamental problem of practical statistics (Pearson,1920):

An “event” has occurred p times out of p + q = n trials, where
we have no a priori knowledge of the frequency of the event in
the total population of occurrences. What is the probability of
its occurring r times in a further r + s = m trials?

classical approach:

probability measure Pθ on (Ω,A)

such that X1,X2, . . .
i.i.d.∼ Ber(θ)

(that is, Pθ{Xi = 1} = θ
and Pθ{Xi = 0} = 1− θ),
where θ ∈ Θ = [0, 1] is the unknown
probability of the “event”

Pparam = {Pθ : θ ∈ Θ}

lik : Pθ 7→ nn

pp qq θ
p (1− θ)q

 θ

lik(Pθ)
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running example

Bayesian approach:

exchangeability and prior probability measure π on Θ,
leading to a probability measure Pπ on Θ× Ω

PBayes = {Pπ}
lik ≡ 1

IP approach:
exchangeability and prior imprecise probability measure Π on Θ,
where Π is a set of probability measures on Θ

PIP = {Pπ : π ∈ Π}

lik : Pπ 7→ Eπ [θp (1−θ)q ]
supπ∈Π Eπ [θp (1−θ)q ]

for example:

Pignor = {Pπ : π prob on Θ}
PIDM(2) = {Pπt : t ∈ (0, 1)},
where πt is Beta(2 t, 2− 2 t)

 t

lik(Pπt )
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possibility distributions

One of the established semantics of possibility theory interprets possibility
distributions as likelihood functions (see for example Hisdal, 1988).

The likelihood ratio test discards the hypothesis that the data were
generated by some probabilistic model in H ⊆ P if

LR(H) = sup
P∈H

lik(P)

is sufficiently small. Interpreted as a set function, LR : 2P → [0, 1] is the
possibility measure on P with possibility distribution lik.

The constant likelihood function lik ≡ 1 describes complete ignorance
(in the sense of absence of information for discrimination between the
probabilistic models): in this case, LR(H) = 1 for all nonempty H ⊆ P.
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the hierarchical model

The probabilistic models in P and the likelihood function lik on P can be
interpreted as the two levels of a (probabilistic-possibilistic) hierarchical
model of the reality under consideration.

The definition of likelihood function implies that when an event A ∈ A is
observed, the probabilistic level P is updated to

P ′ = {P( · |A) : P ∈ P, P(A) > 0}

(this corresponds to the usual updating rule for IP models), and the
possibilistic level lik is updated to

lik ′ : P ′ 7−→
supP∈P : P( · |A)=P′ lik(P) P(A)

supP∈P lik(P) P(A)
.

When A is the first observed event, the constant likelihood function
lik ≡ 1 describes prior ignorance, while other prior likelihood functions lik
can be interpreted as (subjective) measures of the relative plausibility of
the probabilistic models in P according to the prior information.
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fuzzy expectations
The uncertain knowledge about the value g(P) of a function g : P → G
is described by the induced possibility measure LR ◦ g−1 on G, whose
possibility distribution is the profile likelihood function

likg : γ 7−→ sup
P∈P : g(P)=γ

lik(P).

In particular, if g : P → R associates to each probabilistic model P the
corresponding expectation g(P) = EP(X ) of a random variable X , then
likg can be interpreted as the membership function of the fuzzy
expectation of X (fuzzy probability of A ∈ A when X = IA).

In this case, the support supp(likg ) = {x ∈ R : likg (x) > 0} of likg

satisfies

inf supp(likg ) = inf
P∈P

EP(X ) and sup supp(likg ) = sup
P∈P

EP(X );

that is, the hierarchical model generalizes the IP model by additionally
considering the relative plausibility of different values in the expectations
intervals (and in particular in the probability intervals).
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is, we are interested in the (conditional) probability of Xn+1 + Xn+2 = 1.

g : P 7→ P{Xn+1 + Xn+2 = 1}

Pparam, PBayes : the fuzzy
probabilities are in
agreement with the results
of the classical (likelihood)
and Bayesian approaches

PIP : the fuzzy probabilities
contain more information
than the probability
intervals of the IP
approach (which
correspond to supp(likg ))
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evaluations
It is often useful to reduce the fuzzy expectation of a random variable X
to a pair of real numbers V∗[EP(X )] and V ∗[EP(X )], interpreted as lower
and upper evaluations.

Examples of reasonable evaluations are the coherent previsions∫ C

EP(X ) dLR(P) and

∫ C

EP(X ) dLR(P),

and the centered convex previsions (see Pelessoni and Vicig, 2003)

inf
P∈P

[EP(X )− log lik(P)] and sup
P∈P

[EP(X ) + log lik(P)].

When there is no information for discrimination between the probabilistic
models in P (that is, lik ≡ 1), these pairs of evaluations reduce to the
coherent previsions resulting from the IP model:

P∗[EP(X )] = inf
P∈P

[EP(X )] and P∗[EP(X )] = sup
P∈P

[EP(X )].



evaluations
It is often useful to reduce the fuzzy expectation of a random variable X
to a pair of real numbers V∗[EP(X )] and V ∗[EP(X )], interpreted as lower
and upper evaluations.

Examples of reasonable evaluations are the coherent previsions∫ C

EP(X ) dLR(P) and

∫ C

EP(X ) dLR(P),

and the centered convex previsions (see Pelessoni and Vicig, 2003)

inf
P∈P

[EP(X )− log lik(P)] and sup
P∈P

[EP(X ) + log lik(P)].

When there is no information for discrimination between the probabilistic
models in P (that is, lik ≡ 1), these pairs of evaluations reduce to the
coherent previsions resulting from the IP model:

P∗[EP(X )] = inf
P∈P

[EP(X )] and P∗[EP(X )] = sup
P∈P

[EP(X )].



evaluations
It is often useful to reduce the fuzzy expectation of a random variable X
to a pair of real numbers V∗[EP(X )] and V ∗[EP(X )], interpreted as lower
and upper evaluations.

Examples of reasonable evaluations are the coherent previsions∫ C

EP(X ) dLR(P) and

∫ C

EP(X ) dLR(P),

and the centered convex previsions (see Pelessoni and Vicig, 2003)

inf
P∈P

[EP(X )− log lik(P)] and sup
P∈P

[EP(X ) + log lik(P)].

When there is no information for discrimination between the probabilistic
models in P (that is, lik ≡ 1), these pairs of evaluations reduce to the
coherent previsions resulting from the IP model:

P∗[EP(X )] = inf
P∈P

[EP(X )] and P∗[EP(X )] = sup
P∈P

[EP(X )].



inconsistency

The usual updating rule for IP models disregards the information for
discrimination between the probabilistic models in P (since it disregards
the likelihood function lik on P).

For instance, if the elements of P describe the opinions of a group of
Bayesian experts, then the usual updating rule for IP models corresponds
to update the opinion of each expert without reconsidering her/his
credibility, independently of how bad her/his forecasts were when
compared to the forecasts of the other experts.

Since it disregards a part of the information provided by the data, the
usual updating rule for IP models can lead to statistical inconsistency
even in simple problems.
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running example

A pair of lower and upper evaluations of P{Xn+1 + Xn+2 = 1} are
consistent if, for all θ ∈ Θ that are not discarded by the prior information,
they tend (in probability) to Pθ{Xn+1 + Xn+2 = 1} = 2 θ (1− θ) as
n→∞, when X1, . . . ,Xn are distributed according to Pθ.

hierarchical model:
all reasonable evaluations are consistent, and prior ignorance is possible

Bayesian model:
all posterior probabilities are consistent, but prior ignorance is impossible

IP model:

Pignor : prior ignorance, but no consistency
(the probability interval is [0, 1

2 ] for all n)

PIDM(2): consistency, but no prior ignorance

(the probability interval is [0, 1
6 ] when n = 0)
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running example

Piatti, Zaffalon, and Trojani (2005) studied the behavior of the IDM
model when the realization of each random variable X1, . . . ,Xn can be
observed incorrectly with a known probability ε (the errors of observation
are independent, conditional on the realizations of X1, . . . ,Xn).

g : P 7→ P{Xn+1 + Xn+2 = 1}

when ε > 0, the lower
probability is 0 for all n

hence, for all ε > 0 the
lower probability is
inconsistent, and for all
n > 0 it presents an
important discontinuity
when ε→ 0  
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g : P 7→ P{Xn+1 + Xn+2 = 1}

when ε > 0, the lower
probability is 0 for all n

hence, for all ε > 0 the
lower probability is
inconsistent, and for all
n > 0 it presents an
important discontinuity
when ε→ 0  
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another simple example

The random objects X ∈ {a, b, c} and Y ∈ {0, 1} have the following
joint probability distribution:

X = a X = b X = c
Y = 0 0.01 0.01 0.70
Y = 1 0.04 0.04 0.20

X ∈ {b, c} is observed: the conditional probability of Y = 0 is
approximately 0.75

This probability value results from the assumption of “coarsening at
random”: more generally, De Cooman and Zaffalon (2004) assume that
the observation O is a random subset of {a, b, c}, and consider the IP
model described by the set P of all probabilistic models P such that the
above holds, P{X = x , O = z} = 0 when x /∈ z , and

P{Y = 0 |X = x , O = z} = P{Y = 0 |X = x} when x ∈ z .

The probability interval of Y = 0 after having observed O = {b, c} is
approximately [0.20, 0.78].
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another simple example

g : P 7→ P{Y = 0}

the maximum likelihood estimate
corresponds to the probability value
resulting from the assumption of
“coarsening at random”

supp(likg ) corresponds to the
probability interval resulting from
the IP approach
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This example can be made extreme with the following joint probability
distribution, for a small ε ∈ [0, 0.5]:

X = a X = b X = c
Y = 0 0 0 0.5
Y = 1 0.5− ε ε 0

The probability interval of Y = 0 after having observed O = {b, c} is
[0, 1] for all ε > 0, but it collapses to the probability value 1 when ε = 0.



another simple example

g : P 7→ P{Y = 0}

the maximum likelihood estimate
corresponds to the probability value
resulting from the assumption of
“coarsening at random”

supp(likg ) corresponds to the
probability interval resulting from
the IP approach

x

likg

0
0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

This example can be made extreme with the following joint probability
distribution, for a small ε ∈ [0, 0.5]:

X = a X = b X = c
Y = 0 0 0 0.5
Y = 1 0.5− ε ε 0

The probability interval of Y = 0 after having observed O = {b, c} is
[0, 1] for all ε > 0, but it collapses to the probability value 1 when ε = 0.



conclusion

A part of the information provided by the data is disregarded by the usual
updating rule for IP models, and this leads to problems such as
inconsistency or discontinuities.

It does not seem possible to completely solve these problems in the
framework of IP models; in particular, no updating rule whose results are
always at least as precise as those of the usual updating rule can lead to
statistical consistency (and sequential coherence would also be
problematic).

To completely solve these problems, it seems necessary to store more
information than it is possible in the framework of IP models: the
hierarchical model provides a simple solution.
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