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precise, imprecise, and fuzzy probabilities

I imprecise probability (IP) P={Pθ : θ ∈ Θ} generalizes probability P;

e.g. interval [minθ∈Θ Pθ(A),maxθ∈Θ Pθ(A)] = [0.3, 0.9] instead of
precise value P(A) = 0.5

I usually not all values in the probability interval are considered
equally plausible: to accommodate this fact, the interval can be
generalized to a fuzzy number;

e.g. the membership function
πA : [0, 1]→ [0, 1] describes the
fuzzy probability of A (the above
examples correspond to the crisp
membership functions πA = I{0.5}
and πA = I[0.3,0.9])
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I models of “fuzzy probability” have
been proposed in particular by

I Walley (1997) and De Cooman (2005)
I Viertl and Hareter (2006) and Buckley (2006)
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updating and likelihood
I when an event A is observed, the IP model P = {Pθ : θ ∈ Θ} is

usually updated by conditioning each Pθ on A;

the normalization of the conditional probability Pθ(B |A) = Pθ(B∩A)
Pθ(A)

deletes the information about the value Pθ(A)

I the likelihood function lik(θ) ∝ Pθ(A) describes the relative ability
of the probabilistic models Pθ to forecast the observed data;
it is a (the?) central concept in statistical inference

I lik is usually interpreted as a measure of the relative plausibility of
the probabilistic models Pθ in the light of the observed data alone;
the usual updating rule for IP disregards the information contained
in lik (the elements of P are always considered equally plausible),
and this can lead to problems such as statistical inconsistency or
discontinuities

I alternative updating rules for IP making use of some information
contained in lik have been proposed in particular by Moral (1992),
Wilson (2001), Held, Kriegler, and Augustin (2008);
however, to completely solve the problems of IP updating, it seems
necessary to store more information than it is possible in the
framework of IP
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probabilistic-possibilistic hierarchical model
I let us interpret normalized possibility distributions as likelihood

functions;

this is an established interpretation of possibility theory, studied in
particular by Hisdal (1988)

I the set P = {Pθ : θ ∈ Θ} of probability measures and the
normalized possibility measure Π on Θ with possibility distribution π
are the two levels of a probabilistic-possibilistic hierarchical
description of uncertain knowledge;
this hierarchical model generalizes the IP model, which corresponds
to the case with π ≡ 1 (complete ignorance at the possibilistic level)

I when A is observed, the hierarchical model is updated by
conditioning each Pθ on A, and replacing π with the pointwise
product of π and lik;
unlike for IP updating, the information contained in lik is used

I the uncertain knowledge about the value g(θ) of a function
g : Θ→ G is described by the induced possibility measure Π ◦ g−1

on Θ (where g−1 : 2G → 2Θ);
in particular, if g(θ) = Pθ(B), then the induced possibility measure
Π ◦ g−1 on [0, 1] describes the fuzzy probability of B
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example
draws (with replacement) from an urn containing 10 balls, each either
black or white

let P = {Pθ : θ ∈ Θ} be the IP model with complete ignorance about the
number of black balls in the urn: Θ corresponds to the set of all prior
probability measures on {0, 1, . . . , 10}

membership function of the fuzzy probability of drawing •:
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