Fuzzy probabilities based on the likelihood function

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

September 8, 2008

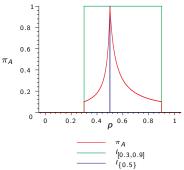
▶ imprecise probability (IP) $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ generalizes probability P;

imprecise probability (IP) P = {P_θ : θ ∈ Θ} generalizes probability P;
 e.g. interval [min_{θ∈Θ} P_θ(A), max_{θ∈Θ} P_θ(A)] = [0.3, 0.9] instead of precise value P(A) = 0.5

- imprecise probability (IP) P = {P_θ : θ ∈ Θ} generalizes probability P;
 e.g. interval [min_{θ∈Θ} P_θ(A), max_{θ∈Θ} P_θ(A)] = [0.3, 0.9] instead of precise value P(A) = 0.5
- usually not all values in the probability interval are considered equally plausible: to accommodate this fact, the interval can be generalized to a fuzzy number;

- imprecise probability (IP) P = {P_θ : θ ∈ Θ} generalizes probability P;
 e.g. interval [min_{θ∈Θ} P_θ(A), max_{θ∈Θ} P_θ(A)] = [0.3, 0.9] instead of precise value P(A) = 0.5
- usually not all values in the probability interval are considered equally plausible: to accommodate this fact, the interval can be generalized to a fuzzy number;

e.g. the membership function $\pi_A : [0,1] \rightarrow [0,1]$ describes the fuzzy probability of A (the above examples correspond to the crisp membership functions $\pi_A = I_{\{0.5\}}$ and $\pi_A = I_{[0.3,0.9]}$)



- imprecise probability (IP) P = {P_θ : θ ∈ Θ} generalizes probability P;
 e.g. interval [min_{θ∈Θ} P_θ(A), max_{θ∈Θ} P_θ(A)] = [0.3, 0.9] instead of precise value P(A) = 0.5
- usually not all values in the probability interval are considered equally plausible: to accommodate this fact, the interval can be generalized to a fuzzy number;

e.g. the membership function $\pi_A : [0,1] \rightarrow [0,1]$ describes the fuzzy probability of A (the above examples correspond to the crisp membership functions $\pi_A = I_{\{0.5\}}$ and $\pi_A = I_{[0.3,0.9]}$)

- $\pi_{A} = \begin{bmatrix} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \end{bmatrix} = \begin{bmatrix} \pi_{A} \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \end{bmatrix} = \begin{bmatrix} \pi_{A} \\ I[0.3, 0.9] \\ I\{0.5\} \end{bmatrix}$
- models of "fuzzy probability" have been proposed in particular by
 - Walley (1997) and De Cooman (2005)
 - Viertl and Hareter (2006) and Buckley (2006)

when an event A is observed, the IP model P = {P_θ : θ ∈ Θ} is usually updated by conditioning each P_θ on A;

▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$

- ▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$
- ► the likelihood function lik(θ) ∝ P_θ(A) describes the relative ability of the probabilistic models P_θ to forecast the observed data;

- ▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$
- the likelihood function lik(θ) ∝ P_θ(A) describes the relative ability of the probabilistic models P_θ to forecast the observed data; it is a (the?) central concept in statistical inference

- ▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$
- the likelihood function lik(θ) ∝ P_θ(A) describes the relative ability of the probabilistic models P_θ to forecast the observed data; it is a (the?) central concept in statistical inference
- *lik* is usually interpreted as a measure of the relative plausibility of the probabilistic models P_θ in the light of the observed data alone;

- ▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$
- the likelihood function lik(θ) ∝ P_θ(A) describes the relative ability of the probabilistic models P_θ to forecast the observed data; it is a (the?) central concept in statistical inference
- *lik* is usually interpreted as a measure of the **relative plausibility** of the probabilistic models P_{θ} in the light of the observed data alone; the usual updating rule for IP disregards the information contained in *lik* (the elements of \mathcal{P} are always considered equally plausible), and this can lead to problems such as statistical inconsistency or discontinuities

- ▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$
- the likelihood function lik(θ) ∝ P_θ(A) describes the relative ability of the probabilistic models P_θ to forecast the observed data; it is a (the?) central concept in statistical inference
- *lik* is usually interpreted as a measure of the **relative plausibility** of the probabilistic models P_{θ} in the light of the observed data alone; the usual updating rule for IP disregards the information contained in *lik* (the elements of \mathcal{P} are always considered equally plausible), and this can lead to problems such as statistical inconsistency or discontinuities
- alternative updating rules for IP making use of some information contained in *lik* have been proposed in particular by Moral (1992), Wilson (2001), Held, Kriegler, and Augustin (2008);

- ▶ when an event *A* is observed, the IP model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is usually updated by conditioning each P_{θ} on *A*; the normalization of the conditional probability $P_{\theta}(B | A) = \frac{P_{\theta}(B \cap A)}{P_{\theta}(A)}$ deletes the information about the value $P_{\theta}(A)$
- the likelihood function lik(θ) ∝ P_θ(A) describes the relative ability of the probabilistic models P_θ to forecast the observed data; it is a (the?) central concept in statistical inference
- *lik* is usually interpreted as a measure of the **relative plausibility** of the probabilistic models P_{θ} in the light of the observed data alone; the usual updating rule for IP disregards the information contained in *lik* (the elements of \mathcal{P} are always considered equally plausible), and this can lead to problems such as statistical inconsistency or discontinuities
- alternative updating rules for IP making use of some information contained in *lik* have been proposed in particular by Moral (1992), Wilson (2001), Held, Kriegler, and Augustin (2008); however, to completely solve the problems of IP updating, it seems necessary to store more information than it is possible in the framework of IP

 let us interpret *normalized* possibility distributions as likelihood functions;

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

► the set P = {P_θ : θ ∈ Θ} of probability measures and the normalized possibility measure Π on Θ with possibility distribution π are the two levels of a probabilistic-possibilistic hierarchical description of uncertain knowledge;

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

► the set P = {P_θ : θ ∈ Θ} of probability measures and the normalized possibility measure Π on Θ with possibility distribution π are the two levels of a probabilistic-possibilistic hierarchical description of uncertain knowledge;

this hierarchical model generalizes the IP model, which corresponds to the case with $\pi \equiv 1$ (complete ignorance at the possibilistic level)

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

► the set P = {P_θ : θ ∈ Θ} of probability measures and the normalized possibility measure Π on Θ with possibility distribution π are the two levels of a probabilistic-possibilistic hierarchical description of uncertain knowledge;

this hierarchical model generalizes the IP model, which corresponds to the case with $\pi \equiv 1$ (complete ignorance at the possibilistic level)

 when A is observed, the hierarchical model is updated by conditioning each P_θ on A, and replacing π with the pointwise product of π and *lik*;

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

► the set P = {P_θ : θ ∈ Θ} of probability measures and the normalized possibility measure Π on Θ with possibility distribution π are the two levels of a probabilistic-possibilistic hierarchical description of uncertain knowledge;

this hierarchical model generalizes the IP model, which corresponds to the case with $\pi\equiv 1$ (complete ignorance at the possibilistic level)

when A is observed, the hierarchical model is updated by conditioning each P_θ on A, and replacing π with the pointwise product of π and *lik*; unlike for IP updating, the information contained in *lik* is used

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

► the set P = {P_θ : θ ∈ Θ} of probability measures and the normalized possibility measure Π on Θ with possibility distribution π are the two levels of a probabilistic-possibilistic hierarchical description of uncertain knowledge;

this hierarchical model generalizes the IP model, which corresponds to the case with $\pi \equiv 1$ (complete ignorance at the possibilistic level)

- when A is observed, the hierarchical model is updated by conditioning each P_θ on A, and replacing π with the pointwise product of π and *lik*; unlike for IP updating, the information contained in *lik* is used
- ▶ the uncertain knowledge about the value $g(\theta)$ of a function $g: \Theta \to \mathcal{G}$ is described by the induced possibility measure $\Pi \circ g^{-1}$ on Θ (where $g^{-1}: 2^{\mathcal{G}} \to 2^{\Theta}$);

 let us interpret *normalized* possibility distributions as likelihood functions;

this is an established interpretation of possibility theory, studied in particular by Hisdal (1988)

► the set P = {P_θ : θ ∈ Θ} of probability measures and the normalized possibility measure Π on Θ with possibility distribution π are the two levels of a probabilistic-possibilistic hierarchical description of uncertain knowledge;

this hierarchical model generalizes the IP model, which corresponds to the case with $\pi \equiv 1$ (complete ignorance at the possibilistic level)

- when A is observed, the hierarchical model is updated by conditioning each P_θ on A, and replacing π with the pointwise product of π and *lik*; unlike for IP updating, the information contained in *lik* is used
- the uncertain knowledge about the value g(θ) of a function g : Θ → G is described by the induced possibility measure Π ∘ g⁻¹ on Θ (where g⁻¹ : 2^G → 2^Θ); in particular, if g(θ) = P_θ(B), then the induced possibility measure Π ∘ g⁻¹ on [0, 1] describes the **fuzzy probability** of B

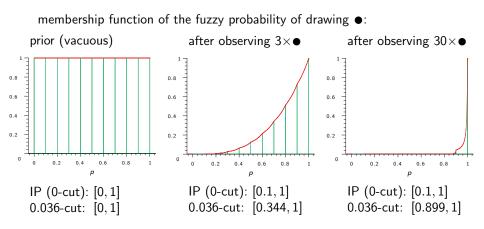
draws (with replacement) from an urn containing 10 balls, each either black or white

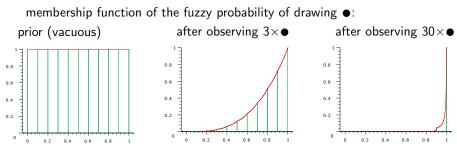
draws (with replacement) from an urn containing 10 balls, each either black or white

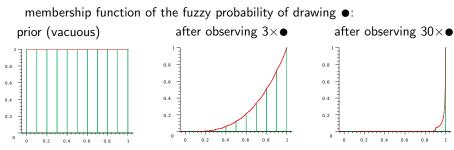
let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be the IP model with complete ignorance about the number of black balls in the urn: Θ corresponds to the set of all prior probability measures on $\{0, 1, \dots, 10\}$

draws (with replacement) from an urn containing 10 balls, each either black or white

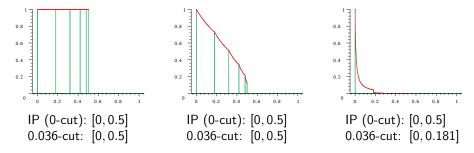
let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be the IP model with complete ignorance about the number of black balls in the urn: Θ corresponds to the set of all prior probability measures on $\{0, 1, \dots, 10\}$



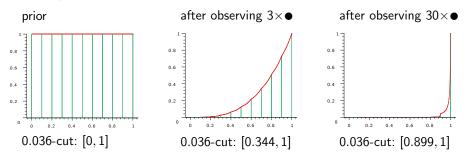




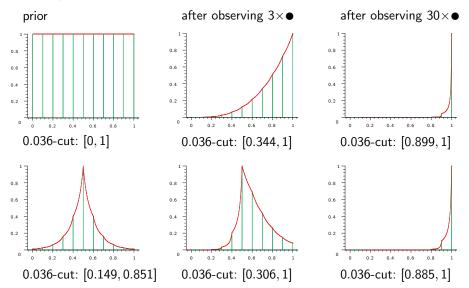
membership function of the fuzzy probability of drawing $\bullet \circ$ or $\circ \bullet$:



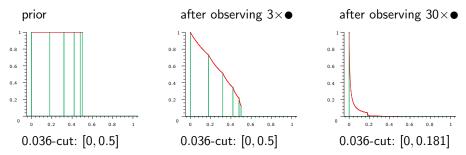
membership function of the fuzzy probability of drawing \bullet without and with prior information about the number of black balls in the urn:



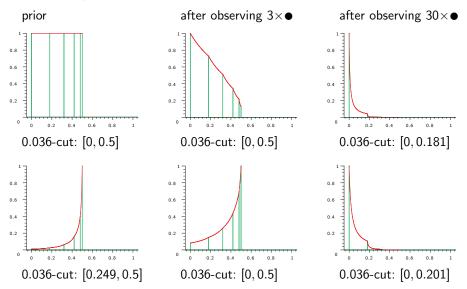
membership function of the fuzzy probability of drawing \bullet without and with prior information about the number of black balls in the urn:



membership function of the fuzzy probability of drawing $\bullet \circ$ or $\circ \bullet$ without and with prior information about the number of black balls in the urn:



membership function of the fuzzy probability of drawing $\bullet \circ$ or $\circ \bullet$ without and with prior information about the number of black balls in the urn:



additional references

- Cattaneo, M. (2008). Probabilistic-possibilistic belief networks. Technical Report, LMU Munich. http://epub.ub.uni-muenchen.de
- Held, H., Augustin, T., and Kriegler, E. (2008). Bayesian learning for a class of priors with prescribed marginals. Int. J. Approx. Reasoning 49, 212–233.
- Walley, P. (1997). Statistical inferences based on a second-order possibility distribution. Int. J. Gen. Syst. 26, 337-383.