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> models of “fuzzy probability” have
been proposed in particular by
» Walley (1997) and De Cooman (2005)
> Viertl and Hareter (2006) and Buckley (2006)
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» when an event A is observed, the IP model P = {Py: 0 € ©} is
usually updated by conditioning each Py on A;
the normalization of the conditional probability Pp(B|A) = P%ﬁg;‘)
deletes the information about the value Py(A)

> the likelihood function /ik(6) o Py(A) describes the relative ability
of the probabilistic models Py to forecast the observed data;
it is a (the?) central concept in statistical inference

> lik is usually interpreted as a measure of the relative plausibility of
the probabilistic models Py in the light of the observed data alone;
the usual updating rule for IP disregards the information contained
in lik (the elements of P are always considered equally plausible),
and this can lead to problems such as statistical inconsistency or
discontinuities

> alternative updating rules for IP making use of some information
contained in /ik have been proposed in particular by Moral (1992),
Wilson (2001), Held, Kriegler, and Augustin (2008);
however, to completely solve the problems of IP updating, it seems
necessary to store more information than it is possible in the
framework of IP
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normalized possibility measure 1 on © with possibility distribution 7
are the two levels of a probabilistic-possibilistic hierarchical
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» when A is observed, the hierarchical model is updated by
conditioning each Py on A, and replacing 7 with the pointwise
product of 7 and lik;
unlike for IP updating, the information contained in lik is used

> the uncertain knowledge about the value g(6) of a function
g : © — G is described by the induced possibility measure 1o g~
on © (where g71:29 — 29);
in particular, if g(0) = Py(B), then the induced possibility measure
Mog~! on [0,1] describes the fuzzy probability of B

1



example

draws (with replacement) from an urn containing 10 balls, each either
black or white



example

draws (with replacement) from an urn containing 10 balls, each either
black or white

let P = {Py:0 € O} be the IP model with complete ignorance about the
number of black balls in the urn: © corresponds to the set of all prior
probability measures on {0,1,...,10}



example

draws (with replacement) from an urn containing 10 balls, each either
black or white

let P = {Py:0 € O} be the IP model with complete ignorance about the
number of black balls in the urn: © corresponds to the set of all prior
probability measures on {0,1,...,10}

membership function of the fuzzy probability of drawing e:

prior (vacuous) after observing 3x @ after observing 30x ®
0 0.2 0.4 » 0.6 0.8 1 0 0.2 0.4 , 0.6 0.8 1 0 0.2 0.4 , 0.6 0.8
IP (0-cut): [0, 1] IP (0-cut): [0.1,1] IP (0-cut): [0.1,1]

0.036-cut: [0,1] 0.036-cut: [0.344,1] 0.036-cut: [0.899, 1]



example
membership function of the fuzzy probability of drawing e:

prior (vacuous) after observing 3x @ after observing 30x ®
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
w w L
0 ° 0 ez as s os 0 PR




example
membership function of the fuzzy probability of drawing e:

1

prior (vacuous)

after observing 3x @

1

after observing 30x ®

0
0 0.2 0.4 0.6 0.8 1

1

1
0.8

0.6

0.4
0.2
T T T

IP (0-cut): [0,0.5]
0.036-cut: [0,0.5]

1

0
0 0.2 0.4 0.6 0.8 1

IP (0-cut): [0,0.5]
0.036-cut: [0,0.5]

0
0 0.2 0.4 0.6 0.8 1

IP (0-cut): [0,0.5]
0.036-cut: [0,0.181]



example

membership function of the fuzzy probability of drawing @ without and
with prior information about the number of black balls in the urn:

prior after observing 3x @ after observing 30x @

1 1 1

T T T T T T T T T T T T
0 0
° o 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.036-cut: [0, 1] 0.036-cut: [0.344,1] 0.036-cut: [0.899, 1]



example

membership function of the fuzzy probability of drawing @ without and
with prior information about the number of black balls in the urn:

prior

after observing 3x @

1

after observing 30x @

1

0 0.2 0.4 0.6 0.8 1

0.036-cut: [0, 1]

0 0.2 0.4 0.6 0.8 1

0.036-cut: [0.149,0.851]

0 0.2 0.4 0.6 0.8 1

0.036-cut: [0.306, 1]

0.036-cut: [0.885, 1]



example

membership function of the fuzzy probability of drawing @ 0 or 0@ without
and with prior information about the number of black balls in the urn:

prior after observing 3x @ after observing 30x ®

1 1 1

T T T T T T
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.036-cut: [0, 0.5] 0.036-cut: [0,0.5] 0.036-cut: [0,0.181]



example

membership function of the fuzzy probability of drawing @ 0 or 0@ without
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