::lmer(measure1 ~ measure2 + (1|patient/eye) + (1|doctor),
lme4data = OCTimages)
corre (correlations with random effects)
Department of Clinical Research, University of Basel
5 September 2024
LMMs for correlated data points, e.g.:
or equivalently:
measure1
and measure2
for random patient
and doctor
\[measure_{ijkl} = \mu + patient_i + eye_{ij} + doctor_k + \varepsilon_{ijkl}\]
with \(patient_i \sim \mathcal{N}(0,\sigma_{pat}^2)\), \(eye_{ij} \sim \mathcal{N}(0,\sigma_{eye}^2)\), \(doctor_k \sim \mathcal{N}(0,\sigma_{doc}^2)\), \(\varepsilon_{ijkl} \sim \mathcal{N}(0,\sigma_\varepsilon^2)\), all independent
\[\Rightarrow \ \ measure_{ijkl} \sim \mathcal{N}(\mu,\
\sigma_{pat}^2 + \sigma_{eye}^2 + \sigma_{doc}^2 + \sigma_\varepsilon^2)\]
\[\begin{pmatrix} measure_1 \\ measure_2 \end{pmatrix}_{ijkl} = \mu + patient_i + eye_{ij} + doctor_k + \varepsilon_{ijkl}\]
with \(patient_i \sim \mathcal{N}(0,\Sigma_{pat}^2)\), \(eye_{ij} \sim \mathcal{N}(0,\Sigma_{eye}^2)\), \(doctor_k \sim \mathcal{N}(0,\Sigma_{doc}^2)\), \(\varepsilon_{ijkl} \sim \mathcal{N}(0,\Sigma_\varepsilon^2)\), all independent
\[\Rightarrow \ \ \begin{pmatrix} measure_1 \\ measure_2 \end{pmatrix}_{ijkl} \sim \mathcal{N}(\mu,\
\Sigma_{pat}^2 + \Sigma_{eye}^2 + \Sigma_{doc}^2 + \Sigma_\varepsilon^2)\]
corre
(soon on CRAN)results of simulation from bivariate random effects model fitted to real data:
“naive” estimation:
RMSE: 0.12
, coverage probability of “95%” CI: 0.51