selcorr

correction for selection

Marco Cattaneo Department of Clinical Research University of Basel

30 October 2020

example

> summary(step(lm(DV ~ IV1 + IV2 + IV3 + IV4 + IV5 + IV6 + IV7 + IV8, DB)))

```
Call:
lm(formula = DV ~ IV2 + IV3 + IV4 + IV5, data = DB)
```

Residuals:

Min	1Q	Median	ЗQ	Max
-12.0055	-2.9442	0.0952	3.5790	9.6031

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	11.221133	2.624620	4.275	3.11e-05	***	
IV2	-0.037505	0.025334	-1.480	0.14052		
1V3	-0.018400	0.008418	-2.186	0.03013	*	
IV4	0.056861	0.016229	3.504	0.00058	***	
1V5	0.015556	0.007696	2.021	0.04476	*	
Signif. code	es: 0 ***	0.001 ** 0	.01 * 0.0	05 . 0.1	1	
Residual sta	andard erro	or: 4.783 o	n 178 deg	grees of t	freedom	
Multiple R-s	squared: (0.07484,	Adjı	isted R-so	quared:	0.05405
F-statistic	: 3.6 on	4 and 178 1	DF, p-va	alue: 0.00	07543	

example

> summary(step(lm(DV ~ IV1 + IV2 + IV3 + IV4 + IV5 + IV6 + IV7 + IV8, DB)))

```
Call:
lm(formula = DV ~ IV2 + IV3 + IV4 + IV5, data = DB)
```

Residuals:

Min	1Q	Median	ЗQ	Max
-12.0055	-2.9442	0.0952	3.5790	9.6031

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.221133 2.624620 4.275 3.11e-05 ***

IV2 -0.037505 0.025334 -1.480 0.14052

IV3 -0.018400 0.008418 -2.186 0.03013 *

IV4 0.056861 0.016229 3.504 0.00058 ***

IV5 0.015556 0.007696 2.021 0.04476 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.783 on 178 degrees of freedom

Multiple R-squared: 0.07484, Adjusted R-squared: 0.05405

F-statistic: 3.6 on 4 and 178 DF, p-value: 0.007543
```

example

> summary(step(lm(DV ~ IV1 + IV2 + IV3 + IV4 + IV5 + IV6 + IV7 + IV8, DB)))

```
Call:
lm(formula = DV ~ IV2 + IV3 + IV4 + IV5, data = DB)
```

Residuals:

Min	1Q	Median	ЗQ	Max
-12.0055	-2.9442	0.0952	3.5790	9.6031

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	11.221133	2.624620	4.275	3.11e-05	***		
IV2	-0.037505	0.025334	-1.480	0.14052		0.1442	
IV3	-0.018400	0.008418	-2.186	0.03013	*	0.0430	*
IV4	0.056861	0.016229	3.504	0.00058	***	0.0016	**
IV5	0.015556	0.007696	2.021	0.04476	*	0.0581	
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1							

Residual standard error: 4.783 on 178 degrees of freedom Multiple R-squared: 0.07484, Adjusted R-squared: 0.05405 F-statistic: 3.6 on 4 and 178 DF, p-value: 0.007543 0.0762

background

after variable/model selection, p-values of goodness-of-fit tests for the selected model should usually be corrected upwards (since the model is selected on the basis of the data, it will fit these data relatively well)

background

- after variable/model selection, p-values of goodness-of-fit tests for the selected model should usually be corrected upwards (since the model is selected on the basis of the data, it will fit these data relatively well)
- a very large number of papers in medical research use variable/model selection without corrections for p-values and confidence intervals (often also for central results and without indication of the discarded variables, although in the highest-level medical literature usually not as primary analyses)

background

- after variable/model selection, p-values of goodness-of-fit tests for the selected model should usually be corrected upwards (since the model is selected on the basis of the data, it will fit these data relatively well)
- a very large number of papers in medical research use variable/model selection without corrections for p-values and confidence intervals (often also for central results and without indication of the discarded variables, although in the highest-level medical literature usually not as primary analyses)
- in the last few years, a few correction methods have been suggested under the name of selective/post-selection inference, although mostly with a focus on machine learning approaches (and very large numbers of covariates)

 R package selcorr on CRAN providing a user-friendly implementation of post-selection inference with a focus on medical statistics

- R package selcorr on CRAN providing a user-friendly implementation of post-selection inference with a focus on medical statistics
- code based on the asymptotic distribution of likelihood ratios (which depends only on the covariance matrix of the independent variables) is available, but should be further developed and documented

- R package selcorr on CRAN providing a user-friendly implementation of post-selection inference with a focus on medical statistics
- code based on the asymptotic distribution of likelihood ratios (which depends only on the covariance matrix of the independent variables) is available, but should be further developed and documented
- in a first step, the package will complement the output of the functions lm and glm with corrected p-values after variable selection by AIC/BIC

- R package selcorr on CRAN providing a user-friendly implementation of post-selection inference with a focus on medical statistics
- code based on the asymptotic distribution of likelihood ratios (which depends only on the covariance matrix of the independent variables) is available, but should be further developed and documented
- in a first step, the package will complement the output of the functions lm and glm with corrected p-values after variable selection by AIC/BIC
- in further steps, the package can then be extended to other statistical models and selection procedures