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MLE of conditional probability

I given: a probabilistic model Pθ with unknown θ, past data D, and events
E ,Q concerning some new (independent) data

I MLE of Pθ(Q |E ) = Pθ(Q |D ∩ E ):

Pθ̂D
(Q |E ) with θ̂D = argmax

θ
Pθ(D) (wrong)

Pθ̂D∩E
(Q |E ) with θ̂D∩E = argmax

θ
Pθ(D ∩ E )

(right)

I when Pθ is a (generalized) regression model, and E ,Q describe predictors and
response, respectively, then there is no difference between (right) and (wrong)

I when Pθ is a Bayesian network, D is a training dataset, and E ,Q concern
some new instances, then the usual MLE is (wrong), and this partially
explains the unsatisfactory performance of MLE for Bayesian networks
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conditional probability estimation in Bayesian networks
I given: a DAG with vertices v ∈ V representing categorical variables Xv , a

complete training dataset D with counts n(·), and conjugate Dirichlet priors
with parameters d(·)

I estimates of local probability models:

p̂D(xv | xpa(v)) =
n(xv , xpa(v))

n(xpa(v))
(ML)

p̂D(xv | xpa(v)) =
n(xv , xpa(v)) + d(xv , xpa(v))

n(xpa(v)) + d(xpa(v))
(Bayes)

I estimates of probabilities concerning a new instance:

p̂D(xQ) =
∑
xV\Q

∏
v∈V

p̂D(xv | xpa(v)) =
∑
xV\Q

∏
v∈V

n(xv , xpa(v))

n(xpa(v))
(ML)

p̂D(xQ) =
∑
xV\Q

∏
v∈V

p̂D(xv | xpa(v)) =
∑
xV\Q

∏
v∈V

n(xv , xpa(v)) + d(xv , xpa(v))

n(xpa(v)) + d(xpa(v))

(Bayes)
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conditional probability estimation in Bayesian networks

I estimates of conditional probabilities concerning a new instance:

p̂D,xE (xQ | xE) =
∑

xV\(Q∪E)

∏
v∈V p̂D(xv | xpa(v))∑

xV\Q

∏
v∈V p̂D(xv | xpa(v))

=

∑
xV\(Q∪E)

∏
v∈V

n(xv ,xpa(v))

n(xpa(v))∑
xV\Q

∏
v∈V

n(xv ,xpa(v))

n(xpa(v))

(wrong ML)

p̂D,xE (xQ | xE) =
∑

xV\(Q∪E)

∏
v∈V p̂D(xv | xpa(v))∑

xV\Q

∏
v∈V p̂D(xv | xpa(v))

=

∑
xV\(Q∪E)

∏
v∈V

n(xv ,xpa(v))+d(xv ,xpa(v))

n(xpa(v))+d(xpa(v))∑
xV\Q

∏
v∈V

n(xv ,xpa(v))+d(xv ,xpa(v))

n(xpa(v))+d(xpa(v))

(Bayes)

I êD,xE (·) are the MLE of expected counts for the new instance, obtained from
the EM algorithm
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n(xpa(v))+êD,xE (xpa(v))∑
xV\Q

∏
v∈V
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performance comparison:
√
MSE

I given: 3 binary variables X1,X2,Y with X1 ⊥X2 |Y and
p(x1 | y) = p(¬x1 | ¬y) = 99%, while p(¬x2 | y) = p(¬x2 | ¬y) = 99%

I estimate p(y | x1, x2) on the basis of a complete training dataset of size 100:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(y)

incomplete ML (when it exists)
complete ML (when incomplete ML exists)
Bayes−Laplace (when incomplete ML exists)
complete ML (unconditional)
Bayes−Laplace (unconditional)
probability that incomplete ML exists
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conclusion

I the following way of using Bayesian networks is in agreement with Bayes
estimation, but not with ML estimation:

estimate the local probability models of a Bayesian network from data,
and then use the resulting global model to calculate conditional
probabilities of future events

I correct MLE of conditional probabilities can be calculated using the EM
algorithm

I future work includes empirical studies of the effect of using the correct MLE
on the performance of Bayesian network classifiers
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