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MLE of conditional probability

» given: a probabilistic model Py with unknown 6, past data D, and events
E, Q concerning some new (independent) data
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Py, (QIE) with Op = arg max Py(D) (wrong)

Marco Cattaneo @ University of Hull Conditional Probability Estimation 2/7



MLE of conditional probability

» given: a probabilistic model Py with unknown 6, past data D, and events
E, Q concerning some new (independent) data

> MLE of Py(Q|E) = Py(Q|DnE):

PéD(Q | E) with Op = arg max Py(D) (wrong)

Py, (QIE) with Opnge =arg max Py(D N E) (right)

Marco Cattaneo @ University of Hull Conditional Probability Estimation 2/7



MLE of conditional probability

» given: a probabilistic model Py with unknown 6, past data D, and events
E, Q concerning some new (independent) data

> MLE of Py(Q|E) = Py(Q|DnE):

PéD(Q | E) with Op = arg max Py(D) (wrong)

Py, (QIE) with Opnge =arg max Py(D N E) (right)

> when Py is a (generalized) regression model, and E, Q describe predictors and
response, respectively, then there is no difference between (right) and (wrong)

Marco Cattaneo @ University of Hull Conditional Probability Estimation 2/7



MLE of conditional probability

» given: a probabilistic model Py with unknown 6, past data D, and events
E, Q concerning some new (independent) data

> MLE of Py(Q|E) = Py(Q|DnE):
PéD(Q | E) with Op = arg max Py(D) (wrong)
Py, (QIE) with Opnge =arg max Py(D N E) (right)

> when Py is a (generalized) regression model, and E, Q describe predictors and
response, respectively, then there is no difference between (right) and (wrong)

» when Py is a Bayesian network, D is a training dataset, and E, @ concern
some new instances, then the usual MLE is (wrong), and this partially
explains the unsatisfactory performance of MLE for Bayesian networks
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conditional probability estimation in Bayesian networks

» given: a DAG with vertices v € V representing categorical variables X, a
complete training dataset D with counts n(-), and conjugate Dirichlet priors
with parameters d(-)
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conditional probability estimation in Bayesian networks

» given: a DAG with vertices v € V representing categorical variables X,, a
complete training dataset D with counts n(-), and conjugate Dirichlet priors
with parameters d(-)

> estimates of local probability models:
n(xv, Xpa(v))
N(Xpa(v))
A n(Xva Xpa(v)) + d(Xva Xpa(v))

Po(xv | Xpa(v)) = 1Contor) + A0t (Bayes)

:BD(XV |Xpa(v)) =

Marco Cattaneo @ University of Hull Conditional Probability Estimation 3/7
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» given: a DAG with vertices v € V representing categorical variables X,, a
complete training dataset D with counts n(-), and conjugate Dirichlet priors
with parameters d(-)

> estimates of local probability models:

n(XV7 Xpa(v))

ﬁD(Xv|X V): (ML)
pa(v) ”(Xpa(v))
5 n(xv: Xpa(v)) + d(Xv; Xpa(v))
Po(xv [ Xpa()) = (Bayes)
pa(v) n(Xpa(v)) + d(xpa(v))
> estimates of probabilities concerning a new instance:
o) — A vaxpa(v) ML
potse) = 3 [T ot i) = 3 TT 74 o)
XY\ Q vey xy\Q vey pa
A XV7X v (XV,X v )
p(xa) = > ] polx [%a) = > [] Xpa( ) a0 P;( )
xv\g veV xp\g VEV Pa(‘/) pa(v)
(Bayes)
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conditional probability estimation in Bayesian networks

» estimates of conditional probabilities concerning a new instance:

ZXV\(QUE) Hvev ﬁD(Xv \ Xpa(v))

zxv\g Hvev po(x |Xpa(V))

(X Xpaw)) (wrong ML)
_ ZXV\(QU£> [lvev "(Xp: )

B xv,x ))
va\g HVEV n(x, =y T n(pa(n)

pa(v

Po.xe (x| xe) =

ZXV\(QUE) HVEV pD(XV ‘ Xpa(v))
ZXV\Q Hvev po(xv |Xpa(v))

$ I n(Xv ,Xpa(v) ) +d (X, Xpa(v))
_ Loxvneue) LIvEV n(a(v))+d (Xpar))

Z H Xpra ))+d(Xv , Xpa(v))
XY\ Q vey (v))+d (Xpa(v))

Po.xe (x| xe) =

(Bayes)
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conditional probability estimation in Bayesian networks

» estimates of conditional probabilities concerning a new instance:

ZXV\(QUS) HVEV ﬁD,Xg (Xv | Xpa(v))
ZXV\Q Hvev P xe (XV | Xpa(v))
(xv+X%pa(v))+€D,xg (Xv:Xpa(v)) (ML)
> cave) Lvey “ i £
\(Qug) vey

1(Xpa(v))+€D,xg (Xpa(v))
D I (X s Xpa(v) ) +€D xg (XvsXpa(v))
xyvo LLVEV n(Xpa())+ED xg (Xpa(v))
ZXV\(ng) HVEV pD(XV ‘ Xpa(v))
ZXV\Q Hvev Po(xv |Xpa(v))
$ I n(Xv ,Xpa(v) ) +d (X, Xpa(v))
_ Loxvyeue) HVEV T n(a0)) +d (i)

S I N(XvsXpa(v) ) +d (X, Xpa(v))
Xv\Q vey n(xpa(v))+d(xpa(v))

Po.xe (x| xe) =
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conditional probability estimation in Bayesian networks

» estimates of conditional probabilities concerning a new instance:

ZXV\(QUS) Hvev P e (xv | Xpa(v))
2 sono Lvey Pooce (X [ Xpa(v))
e ver g e
o e ety ™
va\(gus) Hvev Po(xv | Xpa(v))

S oo Mooy B0 05 [ 5pa00)

Z H n(Xv s Xpa(v) ) +d(Xv s Xpa(v)) (Bayes)
xv\(eue) LLVEV  n(Xpa(v))+d (Xpa(v))

S I N(XvsXpa(v) ) +d (X, Xpa(v))
Xv\Q vey n(xpa(v))"’_d(xpa(v))

Po.xe (x| xe) =

(ML)

Po.xe (x| xe) =

> &p () are the MLE of expected counts for the new instance, obtained from
the EM algorithm
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performance comparison: v MSE

» given: 3 binary variables X;, X5, Y with X; L X5|Y and
p(x1|y) = p(=xi|=y) = 99%, while p(—xz | y) = p(—=x2 [ —y) = 99%
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performance comparison: v MSE

» given: 3 binary variables X;, X5, Y with X; L X5|Y and
p(xi|y) = p(=x1|~y) = 99%, while p(—x2 | y) = p(—x2 | ~y) = 99%

> estimate p(y | x1,%2) on the basis of a complete training dataset of size 100:
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conclusion

> the following way of using Bayesian networks is in agreement with Bayes
estimation, but not with ML estimation:

estimate the local probability models of a Bayesian network from data,
and then use the resulting global model to calculate conditional
probabilities of future events
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estimate the local probability models of a Bayesian network from data,
and then use the resulting global model to calculate conditional
probabilities of future events

» correct MLE of conditional probabilities can be calculated using the EM
algorithm

> future work includes empirical studies of the effect of using the correct MLE
on the performance of Bayesian network classifiers
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