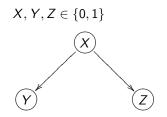
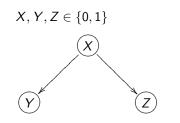
Likelihood-based inference for probabilistic graphical models: Some preliminary results

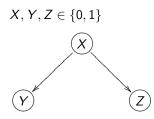
Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

> PGM 2010, Helsinki, Finland 14 September 2010





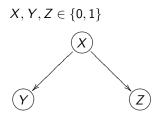
data:	Χ	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35
	1	1	0	3
	1	1	1	4
				100



data:	Χ	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

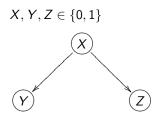
Marco Cattaneo @ LMU Munich Likelihood-based inference for probabilistic graphical models: Some preliminary results



data:	X	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

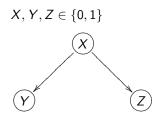
ML estimate: 0.45



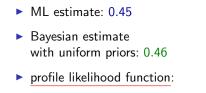
data:	Χ	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

- ML estimate: 0.45
- Bayesian estimate with uniform priors: 0.46



inference about P(X = 1 | Y = 1, Z = 1):



0.2

0.4

0.6

0.8

$ample \times 100$	
$X,Y,Z\in\{0,1\}$	
X	
Y	(Z)

ex

data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	300
	1	1	1	400
				10000

inference about P(X = 1 | Y = 1, Z = 1):

$ample \times 100$	
$X,Y,Z\in\{0,1\}$	
X	
Y	Č

.

ex

data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	300
	1	1	1	400
				10000

inference about P(X = 1 | Y = 1, Z = 1):

► ML estimate: 0.45

$ample \times 100$	
$X,Y,Z\in\{0,1\}$	
X	
Y	Z

.

ex

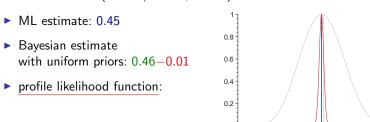
data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	3 <mark>00</mark>
	1	1	1	400
				100 <mark>00</mark>

inference about P(X = 1 | Y = 1, Z = 1):

- ML estimate: 0.45
- Bayesian estimate with uniform priors: 0.46-0.01

$$X,Y,Z\in\{0,1\}$$

data: Х Y Ζ # inference about P(X = 1 | Y = 1, Z = 1):



0.2

0.4

0.6

0.8

likelihood

▶ profile likelihood function for P(X = 1 | Y = 1, Z = 1):

$$\label{eq:lik} \textit{lik}(p) \propto \max_{\substack{bn \in \mathcal{BN} \\ P_{bn}(X=1 \mid Y=1, \ Z=1) = p}} P_{bn}(\text{data}) \qquad \text{for all } p \in [0,1],$$

where $\mathcal{B}\mathcal{N}$ is the set of all Bayesian networks bn compatible with the given graph

likelihood

▶ profile likelihood function for P(X = 1 | Y = 1, Z = 1):

$$\label{eq:lik} \begin{split} \textit{lik}(p) \propto \max_{\substack{bn \in \mathcal{BN}:\\ P_{bn}(X=1 \mid Y=1, \ Z=1)=p}} P_{bn}(\mathsf{data}) & \text{ for all } p \in [0,1], \end{split}$$

where $\mathcal{B}\mathcal{N}$ is the set of all Bayesian networks bn compatible with the given graph

For each β ∈ [0, 1],
{p ∈ [0, 1] : lik(p) ≥ β}
is a confidence interval for P(X = 1 | Y = 1, Z = 1) with

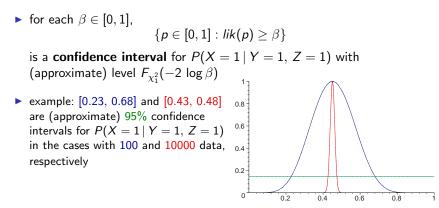
(approximate) level $F_{\chi_1^2}(-2 \log \beta)$

likelihood

▶ profile likelihood function for P(X = 1 | Y = 1, Z = 1):

$$\label{eq:lik} \begin{split} \textit{lik}(p) \propto \max_{\substack{bn \in \mathcal{BN}:\\ P_{bn}(X=1 \mid Y=1, \ Z=1)=p}} P_{bn}(\mathsf{data}) & \text{ for all } p \in [0,1], \end{split}$$

where $\mathcal{B}\mathcal{N}$ is the set of all Bayesian networks bn compatible with the given graph

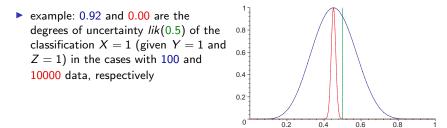


Marco Cattaneo @ LMU Munich Likelihood-based inference for probabilistic graphical models: Some preliminary results

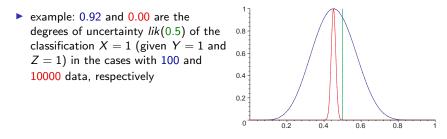
main result of the paper: a simple method for calculating profile likelihood functions in an important class of problems

- main result of the paper: a simple method for calculating profile likelihood functions in an important class of problems
- example of application: a naive classifier assigning a degree of uncertainty to each preference between classes

- main result of the paper: a simple method for calculating profile likelihood functions in an important class of problems
- example of application: a naive classifier assigning a degree of uncertainty to each preference between classes



- main result of the paper: a simple method for calculating profile likelihood functions in an important class of problems
- example of application: a naive classifier assigning a degree of uncertainty to each preference between classes



future research: generalization to larger classes of problems and consideration of the uncertainty about the graph