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notation

I in statistics, L usually denotes:

I likelihood function

(here λ)

I loss function

(here W )

I statistical model: (Ω,F ,Pθ) with θ ∈ Θ (where Θ is a nonempty set) and
random variables X : Ω → X and Xn : Ω → Xn
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loss function

I a statistical decision problem is described by a loss function

W : Θ×D → [0,+∞[,

where D is a nonempty set

I intended as unification (and generalization) of statistical inference,
in particular of:

I point estimation (e.g., with D = Θ)

I hypothesis testing (e.g., with D = {H0,H1})

I most successful general methods:

I point estimation: maximum likelihood estimators

I hypothesis testing: likelihood ratio tests

I these methods do not fit well in the setting of statistical decision theory:
here they are unified (and generalized) in likelihood decision theory
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likelihood function

I λx : Θ → [0, 1] is the (relative) likelihood function given X = x , when

sup
θ∈Θ

λx(θ) = 1 and λx(θ) ∝ Pθ(X = x)

(with λx(θ) ∝ fθ(x) as approximation for continuous X )

I λx describes the relative plausibility of the possible values of θ in the light of
the observation X = x , and can thus be used as a basis for post-data
decision making

I prior information can be described by a prior likelihood function: if X1 and
X2 are independent, then λ(x1,x2) ∝ λx1 λx2 ; that is, when X2 = x2 is
observed, the prior λx1 is updated to the posterior λ(x1,x2)

I strong similarity with the Bayesian approach (both satisfy the likelihood
principle): a fundamental advantage of the likelihood approach is the
possibility of not using prior information (since λx1 ≡ 1 describes complete
ignorance)
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likelihood decision criteria

I likelihood decision criterion: minimize V (W (·, d), λx),

where the functional V must satisfy the following three properties, for all
functions w ,w ′ : Θ → [0,+∞[ and all likelihood functions λ, λn : Θ → [0, 1]

I monotonicity: w ≤ w ′ (pointwise) ⇒ V (w , λ) ≤ V (w ′, λ)
(implied by meaning of W )

I parametrization invariance: b : Θ → Θ bijection ⇒ V (w ◦b, λ ◦b) = V (w , λ)

(excludes Bayesian criteria V (w , λ) =
∫
w λ dµ∫
λ dµ

for infinite Θ)

I consistency: H ⊆ Θ with limn→∞ supθ∈Θ\H λn(θ) = 0 ⇒
limn→∞ V (c IH + c ′ IΘ\H, λn) = c for all constants c, c ′ ∈ [0,+∞[
(excludes minimax criterion V (w , λ) = supθ∈Θ w(θ),
implies calibration: V (c, λ) = c)

I likelihood decision function: δ : X → D such that δ(x) minimizes
V (W (·, d), λx)
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properties

I likelihood decision criteria have the advantages of post-data methods:

I independence from choice of possible alternative observations

I direct interpretation

I simpler problems

I likelihood decision criteria have also important pre-data properties:

I equivariance: for invariant decision problems, the likelihood decision functions
are equivariant

I (strong) consistency: under some regularity conditions, the likelihood decision
functions δn : X1 × · · · × Xn → D satisfy

lim
n→∞

W (θ, δn(X1, . . . ,Xn)) = inf
d∈D

W (θ, d) Pθ-a.s.
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MPL criterion

I MPL criterion: minimize supθ∈Θ W (θ, d)λx(θ),

corresponds to

V (w , λ) = sup
θ∈Θ

w(θ)λ(θ)

(nonadditive integral of w with respect to H 7→ supθ∈H λ(θ))

I point estimation:

I D = Θ finite

I W (θ, θ̂) = Iθ ̸=θ̂ simple loss function

I the maximum likelihood estimator (when well-defined) is the likelihood
decision function resulting from the MPL criterion

I hypothesis testing:

I D = {H0,H1} with H0 : θ ∈ H and H1 : θ ∈ Θ \ H
I W (θ,H1) = c Iθ∈H and W (θ,H0) = c ′ Iθ∈Θ\H with c ≥ c ′

I the likelihood ratio test with critical value c′/c is the likelihood decision
function resulting from the MPL criterion
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a simple example

I X1, . . . ,Xn
i.i.d.∼ N (θ, σ2) with Θ =]0,+∞[ (that is, θ positive and σ known)

I estimation of θ with squared error:

I D = Θ with W (θ, θ̂) = (θ − θ̂)2

I no unbiased estimator, maximum likelihood estimator not well-defined, no
standard (proper) Bayesian prior

I likelihood decision function resulting from the MPL criterion:

I scale invariance and sufficiency: θ̂(x1, . . . , xn) = g( x̄
σ/

√
n
) σ/√n

I consistency and asymptotic efficiency: θ̂(x1, . . . , xn) = x̄ when x̄ ≥
√

2σ/√n
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conclusion

I this work:

I fills a gap in the likelihood approach to statistics

I introduces an alternative to classical and Bayesian decision making

I offers a new perspective on the likelihood methods

I likelihood decision making:

I is post-data and equivariant

I is consistent and asymptotically efficient

I does not need prior information
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