
interpretations of probability

P(A) ∈ [0, 1]: probability of event A

frequentist

P(A) ≈ relative frequency of
occurrence of A in a large number of
independent repetitions

subjective

P(A) ≈ fair price for a security that
pays 1 if A occurs, and 0 otherwise

[P(A),P(A)] ⊆ [0, 1]: interval/imprecise probability of event A

frequentist

?
[P(A),P(A)] can be used as a
description of what we have learned
about P(A)

subjective

P(A),P(A) ≈ maximum buying
price and minimum selling price for
a security that pays 1 if A occurs,
and 0 otherwise
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foundations of statistics

frequentist approach

empirical
repeated-sampling

likelihood approach

empirical
conditional

conditional︸ ︷︷ ︸

Bayesian approach

personalistic
conditional

can be interpreted as an imprecise probability approach:

(profile) likelihood function =: membership function of fuzzy probability

generalizations:

precise probability

↓
interval probability

↓
fuzzy probability
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example (Wilson, ISIPTA ’01)

Let P(Y = 0) = P(Y = 1) = 0.5,
and let X1,X2, . . . ,X100 ∈ {0, 1} be i.i.d. conditional on Y
with P(Xi = 1 |Y = 0) = 0.5 and 0.1 ≤ P(Xi = 1 |Y = 1) ≤ 0.6

After having observed the realizations of X1,X2, . . . ,X100 with mean 0.2,
we would expect the conditional distribution of Y to be concentrated on
1 (since Y = 1 is compatible with the observations, while Y = 0 is not),
but when we update the model by means of “regular extension”, we
almost obtain complete ignorance about the value of Y (the posterior
interval probability of Y = 0 is approximately [0.000000004, 0.999999]).

This interval probability is the
support of the density function of
the conditional “fuzzy probability” of
Y = 0, which is concentrated toward
0, in agreement with the intuition
that the conditional distribution of
Y should be concentrated on 1. 0
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