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occurred p times out of p+ g = n trials, where we have no a priori knowledge
of the frequency of the event in the total population of occurrences. What is
the probability of its occurring r times in a further r +s = m trials?

» sequence of binary random variables: (X1, Xz,...) € X = {0, 1}

> statistical model: X1, X, ... "~ Ber(f) with 6 € © = [0,1]

» data: .7, Xi=p
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with a, 8 € Rso

> [ = « from symmetry, but choice of « is difficult (Bayes: 1, Jeffreys: %
Haldane: 0)

> posterior probability distribution: 6 ~ Beta(a + p, 8 + q)
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> choice of prior lower/upper prevision: e.g., IDM (set of conjugate priors)
0 ~ {Beta(a, ) : a, 8 € Rsg, @+ B = s} with s € Ryg

» choice of s is difficult (Walley: 2 or 1)

> posterior lower/upper prevision:
0 ~ {Beta(a 4+ p,f+q) : o, € Rsg, o+ f = s}

> (imprecise) expectation of (') 6" (1 — ) analytically or numerically, but is
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central idea: uncertainty about 6 described by a likelihood function
(possibility measure) lik on ©

model: {Py: 6 € ©} on X, and lik on ©
necessary choice: (prior likelihood function)

result: (posterior) likelihood function (maximum likelihood estimate,
likelihood interval/region)

properties: invariances (transformation, likelihood principle, ...), sometimes
repeated sampling calibration

example: fundamental problem of practical statistics

>

>

>

no choice necessary
(posterior) likelihood function: /ik(6) « 6P (1 — 0)9

maximum likelihood estimate and likelihood interval for () 6" (1 — 6)*
analytically or numerically

repeated sampling calibration is easy (regular problem)
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» conventional approaches to statistics have advantages and disadvantages
compared to each other
> is there some good reason for preferring the IP approach (to statistics) to
the Bayesian one?
> imprecise expectations are often misinterpreted as confidence/credible
intervals
> choosing the amount of imprecision in prior lower/upper previsions is
particularly difficult
> the likelihood approach to statistics seems to be a better compromise
between the Bayesian and classical ones
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