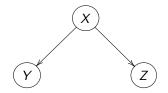
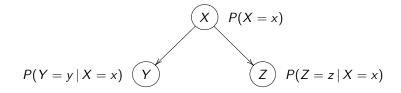
X, Y, Z categorical random variables


X, Y, Z categorical random variables

$$P(X = x, Y = y, Z = z) =$$

= $P(X = x) P(Y = y | X = x) P(Z = z | X = x, Y = y)$


$$P(X = x, Y = y, Z = z) =$$

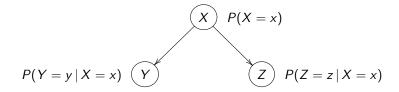
= $P(X = x) P(Y = y | X = x) P(Z = z | X = x, Y = y)$

$$P(X = x, Y = y, Z = z) =$$

= $P(X = x) P(Y = y | X = x) P(Z = z | X = x, Y = y)$
= $P(X = x) P(Y = y | X = x) P(Z = z | X = x)$

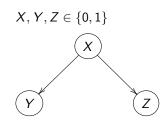
$$P(X = x, Y = y, Z = z) =$$

= $P(X = x) P(Y = y | X = x) P(Z = z | X = x, Y = y)$
= $P(X = x) P(Y = y | X = x) P(Z = z | X = x)$



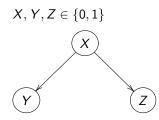
$$P(X = x, Y = y, Z = z) =$$

= $P(X = x) P(Y = y | X = x) P(Z = z | X = x, Y = y)$
= $P(X = x) P(Y = y | X = x) P(Z = z | X = x)$


X, Y, Z categorical random variables Y and Z independent conditional on X

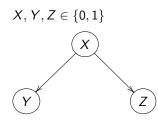
$$P(X = x, Y = y, Z = z) =$$

= $P(X = x) P(Y = y | X = x) P(Z = z | X = x, Y = y)$
= $P(X = x) P(Y = y | X = x) P(Z = z | X = x)$



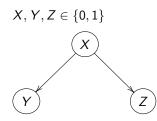
local Markov condition: each variable is conditionally independent of its non-descendants, given its parents

 $X, Y, Z \in \{0, 1\}$



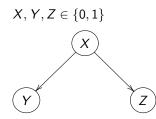
data:	X	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35
	1	1	0	3
	1	1	1	4
·				100

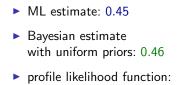
data:	X	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5 6
	1	0	0	
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
•				100


inference about P(X = 1 | Y = 1, Z = 1):

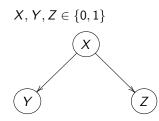
data:	X	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5 6
	1	0	0	6
	1	0	1	35
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

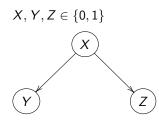

▶ ML estimate: 0.45


data:	X	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
				100

inference about
$$P(X = 1 | Y = 1, Z = 1)$$
:

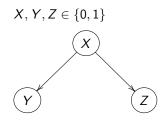

- ▶ ML estimate: 0.45
- Bayesian estimate with uniform priors: 0.46

inference about P(X = 1 | Y = 1, Z = 1):



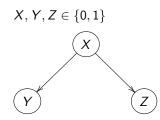
data:	X	Y	Ζ	#	
	0	0	0	15	-
	0	0	1	25	
	0	1	0	7 5	
	0	1	1	5	
	1	0	0	6	
	1	0	1	35	
	1	1	0	3	
	1	1	1	4	
				100	
1):					
17					
0.8	/		\backslash		
0.6					
0.4				\	
0.2	r				
0 0.2	0	.4	0.6	0.8	1

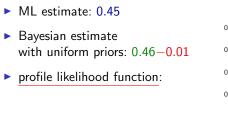
data:	X	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	300
	1	1	1	400
				100 <mark>00</mark>


inference about P(X = 1 | Y = 1, Z = 1):

data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	3 <mark>00</mark>
	1	1	1	400
				100 <mark>00</mark>

inference about P(X = 1 | Y = 1, Z = 1):


▶ ML estimate: 0.45


data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	3 <mark>00</mark>
	1	1	1	400
				100 <mark>00</mark>

inference about
$$P(X = 1 | Y = 1, Z = 1)$$
:

- ▶ ML estimate: 0.45
- Bayesian estimate with uniform priors: 0.46–0.01

inference about P(X = 1 | Y = 1, Z = 1):

data:	Χ	Y	Ζ	#	
	0	0	0	15 <mark>00</mark>	
	0	0	1	25 <mark>00</mark>	
	0	1	0	7 <mark>00</mark>	
	0	1	1	5 <mark>00</mark>	
	1	0	0	6 <mark>00</mark>	
	1	0	1	35 <mark>00</mark>	
	1	1	0	3 <mark>00</mark>	
	1	1	1	4 <mark>00</mark>	
				100 <mark>00</mark>	
1):					
1]					
1					
0.8					
0.6					
0.4					
0.2					
0 0.2	0	0.4	0.6	0.8	1

frequentist approach

empirical repeated-sampling

likelihood approach

empirical conditional

Bayesian approach

personalistic conditional

frequentist approach

empirical repeated-sampling likelihood approach

empirical conditional Bayesian approach

personalistic conditional

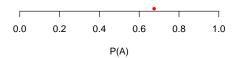
can be interpreted as an imprecise probability approach:

(profile) likelihood function =: membership function of fuzzy probability

frequentist approach

empirical repeated-sampling likelihood approach

empirical conditional **Bayesian approach**


personalistic conditional

can be interpreted as an imprecise probability approach:

(profile) likelihood function =: membership function of fuzzy probability

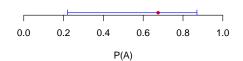
generalizations:

precise probability

frequentist approach

empirical repeated-sampling likelihood approach

empirical conditional **Bayesian approach**


personalistic conditional

can be interpreted as an **imprecise probability** approach:

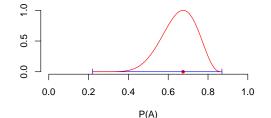
(profile) likelihood function =: membership function of fuzzy probability

generalizations:

precise probability \downarrow interval probability

frequentist approach

empirical repeated-sampling likelihood approach

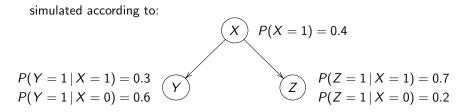

empirical conditional **Bayesian approach**

personalistic conditional

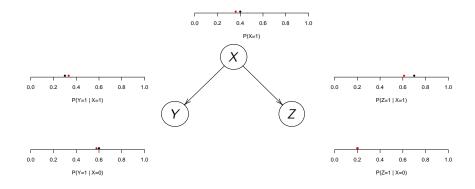
can be interpreted as an **imprecise probability** approach:

(profile) likelihood function =: membership function of fuzzy probability

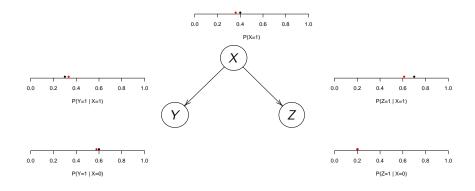
generalizations: precise probability ↓ interval probability ↓ fuzzy probability

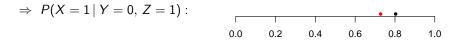


training data

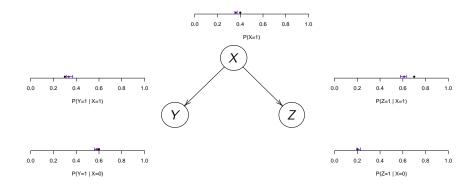

X	Y	Ζ	#
0	0	0	21
0	0	1	6
0	1	0	30
0	1	1	7
1	0	0	9
1	0	1	15
1	1	0	5
1	1	1	7
			100

training data

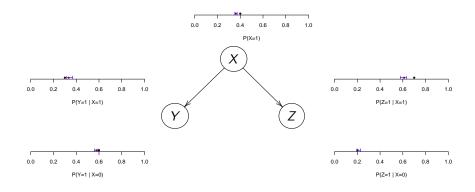

X	Y	Ζ	#
0	0	0	21
0	0	1	6
0	1	0	30
0	1	1	7
1	0	0	9
1	0	1	15
1	1	0	5
1	1	1	7
			100



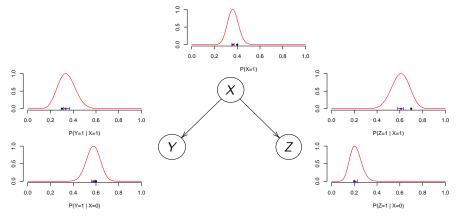
Bayesian network via MLE



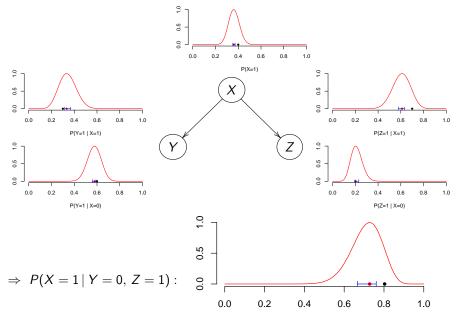
Bayesian network via MLE



credal network via IDM (with s = 2)



credal network via IDM (with s = 2)



 $\Rightarrow P(X = 1 | Y = 0, Z = 1):$

hierarchical network

hierarchical network

