
probabilistic graphical models

X ,Y ,Z categorical random variables

Y and Z independent conditional on X

P(X = x , Y = y , Z = z) =

= P(X = x)P(Y = y |X = x)P(Z = z |X = x , Y = y)

= P(X = x)P(Y = y |X = x)P(Z = z |X = x)
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P(Z = z |X = x)

local Markov condition: each variable is conditionally independent of its
non-descendants, given its parents
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example

X ,Y ,Z ∈ {0, 1}

data: X Y Z #

0 0 0 15
0 0 1 25
0 1 0 7
0 1 1 5
1 0 0 6
1 0 1 35
1 1 0 3
1 1 1 4

100

X

�� ��
Y Z

inference about P(X = 1 |Y = 1, Z = 1):

I ML estimate: 0.45

I Bayesian estimate
with uniform priors: 0.46

I profile likelihood function:
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example × 100

X ,Y ,Z ∈ {0, 1}
data: X Y Z #

0 0 0 1500
0 0 1 2500
0 1 0 700
0 1 1 500
1 0 0 600
1 0 1 3500
1 1 0 300
1 1 1 400
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inference about P(X = 1 |Y = 1, Z = 1):

I ML estimate: 0.45

I Bayesian estimate
with uniform priors: 0.46−0.01

I profile likelihood function:
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foundations of statistics

frequentist approach

empirical
repeated-sampling

likelihood approach

empirical
conditional

conditional︸ ︷︷ ︸

Bayesian approach

personalistic
conditional

can be interpreted as an imprecise probability approach:

(profile) likelihood function =: membership function of fuzzy probability

generalizations:

precise probability

↓
interval probability

↓
fuzzy probability
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training data

X Y Z #

0 0 0 21
0 0 1 6
0 1 0 30
0 1 1 7
1 0 0 9
1 0 1 15
1 1 0 5
1 1 1 7

100

simulated according to:

X P(X = 1) = 0.4

�� ��P(Y = 1 |X = 1) = 0.3

P(Y = 1 |X = 0) = 0.6
Y Z

P(Z = 1 |X = 1) = 0.7

P(Z = 1 |X = 0) = 0.2
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Bayesian network via MLE
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credal network via IDM (with s = 2)
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hierarchical network
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