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random sets

Let x be a categorical variable taking values in the finite set X ̸= ∅.

In (Bayesian) probability theory, information about the uncertain value of
x is described by the probability distribution of a random variable X
taking values in X .

In (Dempster-Shafer) belief functions theory, information about the
uncertain value of x is described by the probability distribution of a
random subset S of X , with S ̸= ∅ a.s.

Each value A ⊆ X of S is interpreted as “x ∈ A” (without any additional
information about the value of x); random variables thus correspond to
the case with |S | = 1 a.s.

The interpretation of the probability distribution of S varies from author
to author, but it is usually an epistemic interpretation.
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belief and plausibility functions

Given a set B ⊆ X , each value A ⊆ X of S falls into one of the following
3 categories:

I A ⊆ B (S = A supports “x ∈ B”),

I A ̸⊆ B and A ̸⊆ BC (S = A supports neither “x ∈ B” nor “x /∈ B”),

I A ⊆ BC (S = A supports “x /∈ B”).

Bel(B) = P{S ⊆ B} is the probability that S supports “x ∈ B”.

Pl(B) = P{S ⊆ B}+ P{S ̸⊆ B and S ̸⊆ BC} = 1− Bel(BC)
is the probability that S does not support “x /∈ B”.

Bel ,Pl : 2X → [0, 1] are dual, monotonic set functions with Bel ≤ Pl .

Bel = Pl ⇔ Bel is additive ⇔ Pl is additive ⇔ |S | = 1 a.s.
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imprecise probabilities
Bel and Pl correspond to coherent lower and upper probabilities,
respectively, in the theory of Walley (1991).

However, the connection with imprecise probabilities can be misleading:
for example, if X = {e,¬e}, and on the basis of completely different
approaches two experts assign the probabilities 0.8 and 0.9, respectively,
to the event x = e, then

I the combined (precise or imprecise) probability of x = e will be in or
around the interval [0.8, 0.9],

I while the combined belief in x = e will be 0.972 (using Dempster’s
rule of combination).

Bel and Pl are descriptions of the support provided by the available
evidence, while a (precise or imprecise) probability distribution is the
description of an equilibrium.

In the above example, the probability ratios are multiplied (as if they

were likelihood ratios): 0.8
1−0.8 × 0.9

1−0.9 = 36 = 0.972
1−0.972

. In fact, Bel and Pl

were rather interpreted as generalizations of likelihood functions or
fiducial probabilities by Dempster and Shafer: see also Wiencierz (2009).
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information fusion

If the probability distributions of the random subsets S1, . . . ,Sn of X
describe the information (about the uncertain value of x) obtained from
n different sources, respectively, then the combined information is
described by the probability distribution of S1 ∩ · · · ∩ Sn, which depends
on the joint probability distribution of S1, . . . ,Sn.

The independence of S1, . . . ,Sn is often assumed, but is in general
incompatible with the condition that S1 ∩ · · · ∩ Sn ̸= ∅ a.s.

Dempster’s rule of combination consists in assuming the independence of
S1, . . . ,Sn and then conditioning on {S1 ∩ · · · ∩ Sn ̸= ∅} (if possible).

However, in general the conditional joint probability distribution neither
has the right marginal distributions for S1, . . . ,Sn, nor describes their
independence.

In the experts’ example, after the conditioning, S1 = S2 a.s. with
P{Si = {e}} = 0.972 and P{Si = {¬e}} = 0.027.

Hence, Dempster’s rule of combination can at best be considered as
corresponding to an approximation of independence.
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combination without the assumption of independence

When no dependence structure is assumed for S1, . . . ,Sn, there are in
general many possible probability distributions for S1 ∩ · · · ∩ Sn.

A typical solution in theories dealing with uncertainty is to select the least
precise description of information (for instance by entropy maximization).

However, this approach has several problems, such as:

I there are many different definitions of “least precise” belief function,

I for each of them the least precise belief function is in general not
unique,

I the selection of a whole belief function can be computationally too
demanding,

I in general the condition that S1 ∩ · · · ∩ Sn ̸= ∅ a.s. cannot be
satisfied.

In the experts’ example, P{S1 ∩ S2 = ∅} ∈ [0.1, 0.3] for all possible joint
probability distributions of S1,S2.
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Fréchet bounds
The new idea in Cattaneo (2010) is to approximate by a belief function
the set function F : 2X → [0, 1] that is pointwise least precise: F
assigns to each B ⊆ X the minimum of P{S1 ∩ · · · ∩ Sn ⊆ B} over all
possible joint probability distributions of S1, . . . ,Sn (that is, F is a lower
envelope).

In particular, the minimal conflict F (∅) is a very interesting measure of
disagreement among belief functions: see also Cattaneo (2003).

For each B ⊆ X , the quantity

max
B1,...,Bn⊆X :
B1∩···∩Bn⊆B

(P{S1 ⊆ B1}+ · · ·+ P{Sn ⊆ Bn}) + 1− n

is a simple lower approximation of F (B), which is exact when n ≤ 2, as
follows from a result by Strassen (1965).

In the experts’ example, F (∅) = 0.1, F ({e}) = 0.9, F ({¬e}) = 0.2,
and F (X ) = 1. Hence, there is a joint probability distribution of S1,S2
with F (B) = P{S1 ∩ S2 ⊆ B} for all B ⊆ X , but P{S1 ∩ S2 = ∅} = 0.1.
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with F (B) = P{S1 ∩ S2 ⊆ B} for all B ⊆ X , but P{S1 ∩ S2 = ∅} = 0.1.



Fréchet bounds
The new idea in Cattaneo (2010) is to approximate by a belief function
the set function F : 2X → [0, 1] that is pointwise least precise: F
assigns to each B ⊆ X the minimum of P{S1 ∩ · · · ∩ Sn ⊆ B} over all
possible joint probability distributions of S1, . . . ,Sn (that is, F is a lower
envelope).

In particular, the minimal conflict F (∅) is a very interesting measure of
disagreement among belief functions: see also Cattaneo (2003).

For each B ⊆ X , the quantity

max
B1,...,Bn⊆X :
B1∩···∩Bn⊆B

(P{S1 ⊆ B1}+ · · ·+ P{Sn ⊆ Bn}) + 1− n

is a simple lower approximation of F (B), which is exact when n ≤ 2, as
follows from a result by Strassen (1965).

In the experts’ example, F (∅) = 0.1, F ({e}) = 0.9, F ({¬e}) = 0.2,
and F (X ) = 1. Hence, there is a joint probability distribution of S1,S2
with F (B) = P{S1 ∩ S2 ⊆ B} for all B ⊆ X , but P{S1 ∩ S2 = ∅} = 0.1.
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