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hierarchical model

A hierarchical model
LR
P consists of a set P of probability measures on a

measurable space (Ω,A) and of a normalized possibility measure LR on
P.

Let lik be the density function of LR:

lik : P 7→ LR{P} on P, and LR(H) = sup
P∈H

lik(P) for all H ⊆ P.

Each element of P is interpreted as a statistical model of the reality under
consideration, and the (normalized) likelihood function lik is interpreted
as a measure of the relative plausibility of the statistical models in P.
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a “fuzzy probability” from an example
by De Cooman and Zaffalon (2004)
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evaluation of a “fuzzy number”

The uncertain knowledge about the value of a function g : P 7→ G is
described by the (normalized) possibility measure LR ◦ g−1 induced on G;
if G = R, then LR ◦ g−1 corresponds to a “fuzzy number”.

Examples of functions P → R:

• g : P 7→ EP(X )

• p : P 7→ P(A)

• ld : P 7→ L(P, d), where L : P ×D → [0,∞) is a loss function
describing a statistical decision problem

idea behind my thesis: select the decision d ∈ D minimizing the
evaluation V (ld , lik) of the corresponding “fuzzy loss” LR ◦ l−1

d
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examples of likelihood-based (upper) evaluations

• Likelihood-based Region Minimax, with β ∈ (0, 1):

VLRMβ
(ld , lik) = sup

P∈P: lik(P)>β

ld(P)

• Maximum Likelihood Decision:

VMLD(ld , lik) = lim
β↑1

VLRMβ
(ld , lik) (= ld(P̂ML))

• Essential Minimax:

VEM(ld , lik) = lim
β↓0

VLRMβ
(ld , lik) = sup

P∈P: lik(P)>0

ld(P)

• Minimax Plausibility-weighted Loss:

VMPL(ld , lik) = sup
P∈P

lik(P) ld(P)
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integral representations

VMPL(ld , lik) = sup
P∈P

lik(P) ld(P) =
∫ S

ld dLR (Shilkret integral)

VMPL*(ld , lik) =
∫ C

ld dLR =
∫∞
0

LR{ld ≥ x} dx (Choquet integral)

VLRMβ
(ld , lik) =

∫ S
ld d(I(β,1] ◦ LR) =

∫ C
ld d(I(β,1] ◦ LR)

VMLD(ld , lik) =
∫ S

ld d(I{1} ◦ LR) =
∫ C

ld d(I{1} ◦ LR)

VEM(ld , lik) =
∫ S

ld d(I(0,1] ◦ LR) =
∫ C

ld d(I(0,1] ◦ LR)

In general, if δ : [0, 1]→ [0, 1] is a nondecreasing function with δ(0) = 0
and δ(1) = 1, then the decision criterion based on

V (ld , lik) =
∫ S

ld d(δ ◦ LR) or V (ld , lik) =
∫ C

ld d(δ ◦ LR)

leads to the usual likelihood-based inference methods (when applied to
some standard form of the corresponding decision problems) if and only if
δ is bijective.
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likelihood-based decision criteria

A likelihood-based decision criterion can be expressed as

minimize V (ld , lik),

where the evaluation V (ld , lik) depends only on LR ◦ l−1
d , is calibrated

(that is, V (c , lik) = c for all c ∈ [0,∞)), and satisfies the following two
conditions:

• monotonicity:

ld(P) ≤ ld′(P) for all P ∈ P ⇒ V (ld , lik) ≤ V (ld′ , lik),

• scale invariance: for all c ∈ (0,∞)

V (ld , lik) ≤ V (ld′ , lik) ⇒ V (c ld , lik) ≤ V (c ld′ , lik).
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consistency

A likelihood-based decision criterion is consistent if

P = {P1,P2} and
lik(P1)

lik(P2)
→∞ ⇒ V (ld , lik)→ ld(P1).

The consistency of a likelihood-based decision criterion is necessary and
sufficient to guarantee the (strong) asymptotic optimality of the resulting
sequences of decisions (under the usual regularity conditions).

If δ : [0, 1]→ [0, 1] is a nondecreasing function with δ(0) = 0 and
δ(1) = 1, then the decision criterion based on

V (ld , lik) =
∫ S

ld d(δ ◦ LR) or V (ld , lik) =
∫ C

ld d(δ ◦ LR)

is consistent if and only if δ is continuous at 0.
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sure-thing principle

A likelihood-based decision criterion satisfies the sure-thing principle if
when P ′,P ′′ build a partition of P

V (ld |P′ , lik|P′) ≤ V (ld′ |P′ , lik|P′)

V (ld |P′′ , lik |P′′) ≤ V (ld′ |P′′ , lik|P′′)

}
⇒ V (ld , lik) ≤ V (ld′ , lik).

For bounded functions ld , the only upper evaluations corresponding to
likelihood-based decision criteria satisfying the sure-thing principle are

• VEM(ld , lik) =
∫ S

ld d(I(0,1] ◦ LR) = sup
P∈P: lik(P)>0

ld(P),

• Vα-MPL(ld , lik) =
∫ S

ld d(LRα) = sup
P∈P

lik(P)α ld(P),

• VMLD(ld , lik) =
∫ S

ld d(I{1} ◦ LR) = lim
β↑1

sup
P∈P: lik(P)>β

ld(P),

where α ∈ (0,∞) can be interpreted as a parameter expressing the
confidence in the information provided by lik.
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α-MPL decision criteria

A likelihood-based decision criterion satisfying the “sure-thing principle
for infinite partitions” is called decomposable. The decomposability
allows the introduction of a concept of “conditional evaluation”
analogous to the concept of conditional expectation.

The only evaluations corresponding to decomposable, consistent
likelihood-based decision criteria are

Vα-MPL(ld , lik) =
∫ S

ld d(LRα) = sup
P∈P

lik(P)α ld(P), with α ∈ (0,∞).

But these evaluations do not satisfy the following property:

• location invariance: for all c ∈ (0,∞)

V (ld , lik) ≤ V (ld′ , lik) ⇔ V (ld + c , lik) ≤ V (ld′ + c , lik).
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convex risk measures

The likelihood-based decision criteria satisfying both the sure-thing
principle and the location invariance (such as the MLD criterion) present
important discontinuities.

If we substitute the location invariance for the scale invariance in the
definition of likelihood-based decision criterion, then the (lower and
upper) evaluations of g : P → R corresponding to the evaluations
Vα-MPL(ld , lik) are

inf
P∈P

[g(P)− α log lik(P)] and sup
P∈P

[g(P) + α log lik(P)].

In particular, if g : P 7→ EP(X ), then these evaluations are the lower and
upper (centered) convex previsions (Pelessoni and Vicig, 2003)

inf
P∈P

[EP(X )− α log lik(P)] and sup
P∈P

[EP(X ) + α log lik(P)],

which correspond to a convex risk measure (Föllmer and Schied, 2002).
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