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Each element of P is interpreted as a statistical model of the reality under
consideration, and the (normalized) likelihood function /ik is interpreted
as a measure of the relative plausibility of the statistical models in P.



a “fuzzy probability” from an example
by De Cooman and Zaffalon (2004)
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evaluation of a “fuzzy number”

The uncertain knowledge about the value of a function g : P — G is
described by the (normalized) possibility measure LR o g~ induced on G;
if G =R, then LR o g~ ! corresponds to a “fuzzy number”.

Examples of functions P — R:
o g: P Ep(X)
e p:P— P(A)

o |y P— L(P,d), where L:P xD —[0,00) isa loss function
describing a statistical decision problem

idea behind my thesis: select the decision d € D minimizing the
evaluation V/(/y, lik) of the corresponding “fuzzy loss” LR o Id_1
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o Likelihood-based Region Minimax, with 5 € (0,1):

VLRME(/da/ik) = sup /d(P)
PeP: lik(P)>p

e Maximum Likelihood Decision:

Vuio (la, lik) = 2?1 Virwm; (fa, lik) (= la(Pu))

e Essential Minimax:

VEM(/d7 /Ik) = lim VLRMﬁ(/da /Ik) = sup /d(P)
Bl0o PeP: lik(P)>0

e Minimax Plausibility-weighted Loss:
VMPL(/da /Ik) = sup /Ik(P) /d(P)
peP
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In general, if 0 : [0,1] — [0,1] is a nondecreasing function with 4(0) = 0
and §(1) = 1, then the decision criterion based on

V(l, lik) = [*lgd(6 0 LR) or V(lg, lik) = [“lyd(5 o LR)

leads to the usual likelihood-based inference methods (when applied to
some standard form of the corresponding decision problems) if and only if
4 is bijective.
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A likelihood-based decision criterion can be expressed as
minimize  V/(lg, lik),
where the evaluation V/(l4, lik) depends only on LR o I*, is calibrated

(that is, V/(c, lik) = ¢ for all ¢ € [0,0)), and satisfies the following two
conditions:

e monotonicity:

/d(P) < /d/(P) foral PeP = V(/d, /Ik) < V(/d/, /Ik),

e scale invariance: for all ¢ € (0, 00)

V(lg, lik) < V(lgr, lik) = V(clg, lik) < V(c g, lik).
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A likelihood-based decision criterion is consistent if

lik(Py)

= {Py,P,} and
7) { 1, 2} an /Ik(Pz) — 0

= V(Id, /Ik) — /d(Pl)

The consistency of a likelihood-based decision criterion is necessary and
sufficient to guarantee the (strong) asymptotic optimality of the resulting
sequences of decisions (under the usual regularity conditions).

If 6 :[0,1] — [0,1] is a nondecreasing function with 6(0) = 0 and
d(1) = 1, then the decision criterion based on

V(la, lik) = [*lad(6 o LR) or V(lg, lik) = [“lyd(5 o LR)

is consistent if and only if § is continuous at 0.
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A likelihood-based decision criterion satisfies the sure-thing principle if
when P’ P” build a partition of P

V(lg|pr, liklpr) < V(lgr|pr, lik|pr
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For bounded functions /4, the only upper evaluations corresponding to
likelihood-based decision criteria satisfying the sure-thing principle are

o Vem(la, lik) = [*lyd(Ipy o LR) = sup  Ig(P),
PEP: lik(P)>0

o Vope(la, lik) = [*lyd(LR®) :gug/ik(P)“ 14(P),
S

o Vio(la, lik) = [lgd(Iy o LR) =lim  sup  Ig(P),
BIL pep: ik(P)>B

where « € (0,00) can be interpreted as a parameter expressing the
confidence in the information provided by lik.
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But these evaluations do not satisfy the following property:

e location invariance: for all ¢ € (0, 00)

V(lg, lik) < V(lgr, lik) < V(g + c, lik) < V(lg + c, lik).
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In particular, if g : P — Ep(X), then these evaluations are the lower and
upper (centered) convex previsions (Pelessoni and Vicig, 2003)

inf [Ep(X) — « log lik(P)] and  sup[Ep(X) + « log lik(P)],
pPeP PeP

which correspond to a convex risk measure (Follmer and Schied, 2002).



