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the idea behind my thesis

I The likelihood function is central to statistics, and the most
appreciated general methods of statistical inference are based
directly on the likelihood function.

I Wald unified statistics in his theory of decision functions, but the
likelihood-based methods do not fit well into this perspective (they
are in general suboptimal from the repeated sampling point of view).

I In my thesis the decisions are based directly on the likelihood
function, and the likelihood-based inference methods can be
obtained as special cases.

I Through a new perspective on the relationships between
likelihood-based methods, this approach suggests and justifies new
methods based on the likelihood function.

I The resulting methods share the advantages of the likelihood-based
inference methods: they are intuitive, generally applicable,
conditional, dependent only on sufficient statistics, equivariant,
parametrization invariant, asymptotically optimal (consistent) and
efficient, and usually good from the repeated sampling point of view.
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the likelihood function

Let P be a set of probability measures on a measurable space (Ω,A).

Each P ∈ P is interpreted as a model of the reality under consideration;
it assigns the probability P(A) to the realization of the event A ∈ A.

After having observed the event A ∈ A, the likelihood function
lik : P 7−→ P(A) on P describes the relative ability of the models to
forecast the observed data.

The likelihood function can be interpreted as a measure of the relative
plausibility of the models in the light of the observed data alone
(proportional likelihood functions are equivalent).

If we observe a second event B ∈ A, then the likelihood of P ∈ P
becomes P(A ∩ B) = P(A) P(B |A); that is, the new likelihood function
is lik lik ′, where lik ′ : P 7→ P(B |A).
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the likelihood ratio

The likelihood ratio test discards the hypothesis H ⊆ P when

LR(H) =
supP∈H lik(P)

supP∈P lik(P)
= sup

P∈H
c lik(P)

is sufficiently small (where 1
c = supP∈P lik(P)).

In regular problems, under the hypothesis H, the statistic −2 log LR(H)
is asymptotically χ2 distributed (the number of degrees of freedom is the
difference in dimensionality between P and H).

The (nonadditive) measure LR : 2P → [0, 1] is normalized and
completely maxitive, that is:

LR(P) = 1 and LR

( ⋃
H∈S
H

)
= sup
H∈S

LR(H) for all S ⊆ 2P .

A completely maxitive measure LR on a set P is determined by its density
function LR↓ : P 7→ LR{P} on P, since LR(H) = supP∈H LR↓(P).
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the hierarchical model

By interpreting the likelihood function as a measure of the relative
plausibility of the models in P, we obtain a probabilistic-possibilistic
hierarchical description of uncertain knowledge:

LR
P .

The uncertain knowledge about the value of a function g : P 7→ G is
described by the (relative) possibility measure LR ◦ g−1 induced on G.

When C ∈ A is observed, the hierarchical model
LR
P is updated to

LR′

P ′ ,
where P ′ = {P(· |C ) : P ∈ P, P(C ) > 0} and

LR ′{P ′} ∝ sup
{
LR{P}P(C ) : P ∈ P, P(· |C ) = P ′

}
for all P ′ ∈ P ′.
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the description of ignorance

A constant likelihood function describes the complete absence of
information for discrimination between the models in P: in this case LR
is denoted by ∅ (that is, ∅↓ = 1).

When we use no prior information about the relative plausibility of the

elements of P, we start with the hierarchical model
∅
P; but we can also

start with the hierarchical model
LR
P for some prior non-constant

likelihood function LR↓ on P, interpreted as the likelihood function
induced by the prior information.

The fundamental qualitative difference between a probability measure π
on P and a possibility measure LR on P is that when H and H′ are two
(measurable) disjoint subsets of P,

π(H′) > 0 ⇒ π(H ∪H′) > π(H),

while LR(H′) > 0 and LR(H ∪H′) = LR(H) are compatible.
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the usual approaches to statistics

I In the classical approach we use a model of the form
∅
P, and we

never update it (we base the conclusions on expected values).

I In the Bayesian approach we use a model of the form
∅
{P}, and we

update it by conditioning P.

I In the IP approach we use a model of the form
∅
P, but when we

update it (by means of “regular extension”) we throw away the
information contained in the likelihood function.

If the elements of P represent the opinions of a group of Bayesian
experts, then the updating by means of “regular extension”
corresponds to update the opinion of each expert without
reconsidering her/his credibility, independently of how bad her/his
forecasts were when compared to the forecasts of the other experts.
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“regular extension” leads to inconsistency

An example by Wilson (ISIPTA ’01):

Let P(Y = 0) = P(Y = 1) = 0.5,
and let X1,X2, . . . ,X100 ∈ {0, 1} be i.i.d. conditional on Y
with P(Xi = 1 |Y = 0) = 0.5 and 0.1 ≤ P(Xi = 1 |Y = 1) ≤ 0.6.

After having observed the realizations of X1,X2, . . . ,X100 with mean 0.2,
we would expect the conditional distribution of Y to be concentrated on
1 (since Y = 1 is compatible with the observations, while Y = 0 is not),
but when we update the model by means of “regular extension”, we
almost obtain complete ignorance about the value of Y (the posterior
interval probability of Y = 0 is approximately [0.000000004, 0.999999]).

This interval probability is the support of the density function
(LR ◦ g−1)↓ of the conditional “fuzzy probability” that we obtain when
we consider the likelihood function on the set P of the models P and we
define g(P) as the conditional probability of Y = 0 under the model P;
but the conditional “fuzzy probability” of Y = 0 is concentrated toward
0, in agreement with the intuition that the conditional distribution of Y
should be concentrated on 1.
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another simple example

Assume that we have the following joint probability distribution P for the
random variables X and Y :

X = a X = b X = c
Y = 0 0.01 0.01 0.70
Y = 1 0.04 0.04 0.20

We observe X ∈ {b, c}, and P(Y = 0 |X ∈ {b, c}) ≈ 0.75.

This conclusion corresponds to the assumption of “coarsening at
random”: more generally, De Cooman and Zaffalon (2004) assume that
the observation O is a random subset of {a, b, c}, and the probability
measure P satisfies P(X = x , O = z) = 0 when x /∈ z , and

P(Y = 0 |X = x , O = z) = P(Y = 0 |X = x) when x ∈ z .

The posterior interval probability of Y = 0 after having observed
O = {b, c} is approximately [0.20, 0.78].
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the conditional probability of Y = 0
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