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Introduction

Regression Analysis

� Consider data on two
variables, X and Y .

� The aim is to investigate
the relationship between
X and Y .
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Introduction

Linear Regression 1

� The relationship between
X and Y is described by:
Y = f (X ) = a + b X ,
a, b ∈ R.

� For which a and b does
the function f best fit
the data?
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Introduction

Linear Regression 2

� For a given f , the
(absolute) residuals are
defined by
Rf ,i := |Yi − f (Xi )|.

� Ordinary Least Squares:
fOLS minimizes the mean
of Rf ,i

2.

� Least Median of
Squares: fLMS minimizes
the median of Rf ,i

2.
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Introduction

Imprecise Data

� Observation spaces of X
and Y are partitioned
into disjoint intervals.

� Rectangular data:
[X i ,X i )× [Y i ,Y i ).

� How to draw a line that
reflects the relationship
between X and Y ?

� Common simple method:
OLS based on interval
midpoints.

� Further approaches: e.g.
Domingues et al. (2010)
or Ferson et al. (2007).
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Regression with Imprecise Data

A Robust Approach to Regression with Imprecise Data

� Theoretical framework: likelihood-based decisions (Cattaneo, 2007).

� We assume that the variables have precise values, which are
imprecisely observed:

Vi := (Xi ,Yi ) and V ∗
i := [X i ,X i )× [Y i ,Y i ), i = 1, . . . , n.

� Nonparametric probability model:

P := {P : (Vi ,V
∗
i ), i = 1, . . . , n, i.i.d. ∧ P(Vi ∈ V ∗

i ) ≥ 1− ε} ,

for some ε ∈ [0, 1].

� Given V ∗
1 , . . . ,V

∗
n , we reduce P via the likelihood function to the set

P>β := {P ∈ P : lik(P) > β} , for some (chosen) β ∈ (0, 1).

� The set P>β determines interval-valued estimates of the median of
the (absolute) residuals Rf ,i for the regression functions f .
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Regression with Imprecise Data

Regression as a Decision Problem

� For each regression function f , we have an interval-valued evaluation,
which is a confidence interval for the median of Rf ,i .

� Interval dominance leads to a set of optimal regression functions.

� (Γ-)minimax leads to one optimal regression function.
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Regression with Imprecise Data

Result of Regression 1

� Regression analysis of
the imprecise dataset
shown before.

� We considered linear
regression functions,
f (X ) = a + b X .

� Calculations are based
on a grid search.

� The imprecision of the
result mainly reflects the
imprecision of the data.
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Regression with Imprecise Data

Result of Regression 2

� We performed the same
analysis on the dataset
with imprecise
observations of X , but
precise data of Y .

� The result of the
regression analysis is
much more precise.
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Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



Concluding Remarks

Summary and Outlook

� We introduced a likelihood-based imprecise regression approach.

� The approach is very general and the regression method covers many
different settings:

� We can consider all kinds of imprecise data, not only disjoint intervals.

� The imprecise data can be wrong with a certain probability (ε > 0).

� It is possible to consider more than one explanatory variable.

� There can be imprecision in dependent and explanatory variables at the
same time.

� We can consider arbitrary regression functions, not only linear ones.

� Instead of the median we can use any other quantile.

� The presented regression method yields very robust results.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 10 / 11



References

Cattaneo, M. (2007). Statistical Decisions Based Directly on the
Likelihood Function. PhD thesis, ETH Zurich.
doi:10.3929/ethz-a-005463829.

Domingues, M. A. O., de Souza, R. M. C. R., and Cysneiros, F. J. A.
(2010). A robust method for linear regression of symbolic interval data.
Pattern Recognit. Lett. 31, 1991–1996.

Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W., and Ginzburg, L.
(2007). Experimental Uncertainty Estimation and Statistics for Data
Having Interval Uncertainty. Technical Report SAND2007-0939. Sandia
National Laboratories.

M. Cattaneo, A. Wiencierz (LMU) Regression with Imprecise Data ISIPTA ’11, July 25, 2011 11 / 11


	Introduction
	Regression with Imprecise Data
	Concluding Remarks

