Likelihood-based Naive Credal Classifier A movie (paper) by

Alessandro Antonucci*, Marco Cattaneo†, Giorgio Corani*

*Istituto "Dalle Molle" di Studi sull'Intelligenza Artificiale - Lugano (Switzerland)

†Ludwig-Maximilians-Universität - München (Germany)

ISIPTA'11 - Innsbruck, July 27, 2011

THE BAYESIAN

Giorgio Corani

BIO @IDSIA, PhD in Engineering, Bayesian/credal classification

THE BAYESIAN

Giorgio Corani

BIO @IDSIA, PhD in Engineering, Bayesian/credal classification

THE FREQUENTIST

Marco Cattaneo

BIO @LMU, PhD Statistics, Likelihood-based learning

THE BAYESIAN

Giorgio Corani

THE AGNOSTIC

Alessandro Antonucci

THE FREQUENTIST

Marco Cattaneo

BIO @LMU, PhD Statistics, Likelihood-based learning

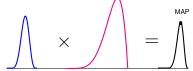
EPISODE I

"Crises of Faith"

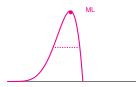
Learning probabilistic models from data

BAYESIAN

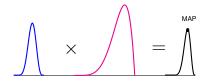
prior × likelihood = posterior



FREQUENTIST likelihood (only)



$\label{eq:bayesian} \mbox{\sc BAYESIAN}$ $\mbox{\sc prior} \times \mbox{\sc likelihood} = \mbox{\sc posterior}$

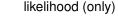


 $prior \bm{s} \times likelihood = posterior \bm{s}$

 $\overline{\mathsf{IDM}}$ prior ignorance with Dir(st)

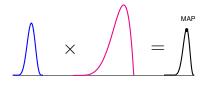
$$\mathbf{t} \in \mathcal{T} := \left\{ \mathbf{t} \left| \sum_{c \in \mathcal{C}} t(c) = 1, t(c) > 0 \right. \right\}$$

FREQUENTIST



BAYESIAN

 $prior \times likelihood = posterior$



 $priors \times likelihood = posteriors$

 $\frac{\mathsf{IDM}}{\mathsf{prior}} \text{ prior ignorance with } Dir(st)$

$$\mathbf{t} \in \mathcal{T} := \left\{ \mathbf{t} \left| \sum_{c \in \mathcal{C}} t(c) = 1, t(c) > 0 \right. \right\}$$

FREQUENTIST

likelihood (only)

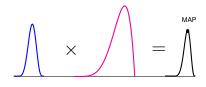
models with likelihood \geq threshold

LIK refine starting credal set P

$$\mathbf{P}_{\alpha} := \{ P \in \mathbf{P} | P(\mathcal{D}) \ge \alpha P_{\mathsf{ML}}(\mathcal{D}) \}$$

BAYESIAN

 $prior \times likelihood = posterior$



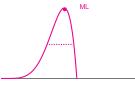
 $priors \times likelihood = posteriors$

IDM prior ignorance with Dir(st)

$$\mathbf{t} \in \mathcal{T} := \left\{ \mathbf{t} \mid \sum_{c \in \mathcal{C}} t(c) = 1, t(c) > 0 \right\}$$

FREQUENTIST

likelihood (only)



models with likelihood ≥ threshold

LIK refine starting credal set P

$$\mathbf{P}_{\alpha} := \{ P \in \mathbf{P} \, | \, P(\mathcal{D}) \ge \alpha P_{ML}(\mathcal{D}) \}$$

threshold $\alpha \in [0, 1] \, (\mathbf{P}_{\alpha} \subseteq \mathbf{P})$

$$(\mathbf{P}_{\alpha=0} \equiv \mathbf{P}, \, \mathbf{P}_{\alpha=1} = P_{ML})$$

BAYESIAN

 $prior \times likelihood = posterior$

priors × likelihood = posteriors

$$\mathbf{t} \in \mathcal{T} := \left\{ \mathbf{t} \left| \sum_{c \in \mathcal{C}} t(c) = 1, t(c) > 0 \right. \right\}$$
 s equivalent sample size
 $(s = 0 \text{ precise, } s \to \infty \text{ vacuous})$

FREQUENTIST

likelihood (only)

models with likelihood \geq threshold

LIK refine starting credal set P

 $(\mathbf{P}_{\alpha=0} \equiv \mathbf{P}, \mathbf{P}_{\alpha=1} \equiv P_{MI})$

$$\mathbf{P}_{\alpha} := \{ P \in \mathbf{P} \, | \, P(\mathcal{D}) \ge \alpha P_{ML}(\mathcal{D}) \}$$

threshold $\alpha \in [0, 1] \, (\mathbf{P}_{\alpha} \subseteq \mathbf{P})$

EPISODE II

"Becoming adults"

Credal classification

Class C, Features $\mathbf{F} := (F_1, \dots, F_m), f_i \in \mathcal{F}_i$ complete data $\mathcal{D} := \{(\mathbf{c}^{(j)}, \mathbf{f}^{(j)})\}_{i=1}^d$

Which class label assign to instance $\mathbf{F} = \tilde{\mathbf{f}}$?

Precise classifiers learn joint $P(C, \mathbf{F})$

Assign to $\tilde{\mathbf{f}}$ most probable class label

$$arg \max_{c' \in \mathcal{C}} P(c', \tilde{\mathbf{f}})$$

this is a classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \rightarrow 0$

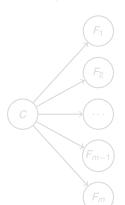
Credal classifiers learn joint credal set P(C, F)

Set of optimal class labels (e.g., maximality)

$$\{c' \in \mathcal{C} | \nexists c'' \in \mathcal{C} : P(c'', \tilde{\mathbf{f}}) > P(c', \tilde{\mathbf{f}}), \forall P \in \mathbf{P}\}$$

A credal classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to 2^{\mathcal{C}}$ (may) return multiple classes

naive assumption



Class C, Features $\mathbf{F} := (F_1, \dots, F_m)$, $f_i \in \mathcal{F}_i$ complete data $\mathcal{D} := \{(\mathbf{c}^{(j)}, \mathbf{f}^{(j)})\}_{i=1}^d$

Which class label assign to instance $\mathbf{F} = \tilde{\mathbf{f}}$?

Precise classifiers learn joint $P(C, \mathbf{F})$

Assign to $\tilde{\mathbf{f}}$ most probable class label

$$arg \max_{c' \in \mathcal{C}} P(c', \tilde{\mathbf{f}})$$

this is a classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \rightarrow 0$

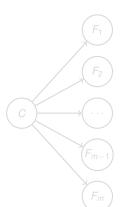
Credal classifiers learn joint credal set P(C, F)

Set of optimal class labels (e.g., maximality

$$\{\boldsymbol{c}' \in \mathcal{C} | \nexists \boldsymbol{c}'' \in \mathcal{C} : P(\boldsymbol{c}'', \tilde{\boldsymbol{f}}) > P(\boldsymbol{c}', \tilde{\boldsymbol{f}}), \forall P \in \boldsymbol{P}\}$$

A credal classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to 2^{\mathcal{C}}$ (may) return multiple classes

naive assumption



Class C, Features $\mathbf{F} := (F_1, \dots, F_m), f_i \in \mathcal{F}_i$ complete data $\mathcal{D} := \{(\mathbf{c}^{(j)}, \mathbf{f}^{(j)})\}_{i=1}^d$

Which class label assign to instance $\mathbf{F} = \tilde{\mathbf{f}}$?

Precise classifiers learn joint $P(C, \mathbf{F})$

Assign to $\tilde{\mathbf{f}}$ most probable class label

 $\operatorname{arg\,max}_{c' \in \mathcal{C}} P(c', \mathbf{\tilde{f}})$

this is a classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to \mathcal{C}$

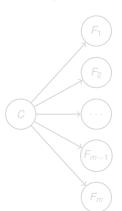
Credal classifiers learn joint credal set P(C, F)

Set of optimal class labels (e.g., maximality

$$\{c' \in \mathcal{C} | \nexists c'' \in \mathcal{C} : P(c'', \tilde{\mathbf{f}}) > P(c', \tilde{\mathbf{f}}), \forall P \in \mathbf{P}\}$$

A credal classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to 2^{\mathcal{C}}$ (may) return multiple classes

naive assumption



Class C, Features $\mathbf{F} := (F_1, \dots, F_m), f_i \in \mathcal{F}_i$ complete data $\mathcal{D} := \{(\mathbf{c}^{(j)}, \mathbf{f}^{(j)})\}_{i=1}^d$

Which class label assign to instance $\mathbf{F} = \mathbf{\tilde{f}}$?

Precise classifiers learn joint $P(C, \mathbf{F})$

Assign to $\tilde{\mathbf{f}}$ most probable class label

$$arg \max_{c' \in \mathcal{C}} P(c', \tilde{\mathbf{f}})$$

this is a classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to \mathcal{C}$

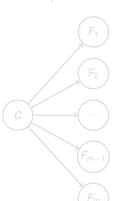
Credal classifiers learn joint credal set P(C, F)

Set of optimal class labels (e.g., maximality)

$$\{\boldsymbol{c}' \in \mathcal{C} | \nexists \boldsymbol{c}'' \in \mathcal{C} : P(\boldsymbol{c}'', \tilde{\boldsymbol{f}}) > P(\boldsymbol{c}', \tilde{\boldsymbol{f}}), \forall P \in \boldsymbol{P}\}$$

A credal classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to 2^{\mathcal{C}}$ (may) return multiple classes

naive assumption



Class C, Features $\mathbf{F} := (F_1, \dots, F_m), f_i \in \mathcal{F}_i$ complete data $\mathcal{D} := \{(\mathbf{c}^{(j)}, \mathbf{f}^{(j)})\}_{i=1}^d$

Which class label assign to instance $\mathbf{F} = \mathbf{\tilde{f}}$?

Precise classifiers learn joint $P(C, \mathbf{F})$

Assign to $\tilde{\mathbf{f}}$ most probable class label

 $arg \max_{c' \in \mathcal{C}} P(c', \tilde{\mathbf{f}})$

this is a classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to \mathcal{C}$

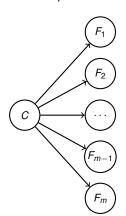
Credal classifiers learn joint credal set P(C, F)

Set of optimal class labels (e.g., maximality)

$$\{\boldsymbol{c}' \in \mathcal{C} | \nexists \boldsymbol{c}'' \in \mathcal{C} : P(\boldsymbol{c}'', \tilde{\boldsymbol{f}}) > P(\boldsymbol{c}', \tilde{\boldsymbol{f}}), \forall P \in \boldsymbol{P}\}$$

A credal classifier: $(\mathcal{F}_1 \times \ldots \times \mathcal{F}_m) \to 2^{\mathcal{C}}$ (may) return multiple classes

naive assumption



BAYESIAN

- IDM-based NCC (Zaffalon, 2001
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α -cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

\mathbf{NCC}_{ϵ} (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- $NCC_{\epsilon=0} = NBC$, $NCC_{\epsilon=1}$ vacuous

NCC_{α} (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α -cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

\mathbf{NCC}_{ϵ} (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- $NCC_{\epsilon=0} = NBC$, $NCC_{\epsilon=1}$ vacuous

NCC_{α} (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α -cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

\mathbf{NCC}_{ϵ} (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- $NCC_{\epsilon=0} = NBC$, $NCC_{\epsilon=1}$ vacuous

NCC_o (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α -cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

NCC_e (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- NCC_{e=0} =NBC, NCC_{e=1} vacuous

\mathbf{VCC}_{α} (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α-cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

NCC_e (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- NCC_{e=0} =NBC, NCC_{e=1} vacuous

NCC_{α} (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α-cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

 \mathbf{NCC}_{ϵ} (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- NCC_{e−0} =NBC, NCC_{e−1} vacuous

 \mathbf{NCC}_lpha (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α -cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

 \mathbf{NCC}_{ϵ} (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- NCC_{$\epsilon=0$} =NBC, NCC_{$\epsilon=1$} vacuous

 NCC_{α} (this paper)

- "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$
- Assume C missing-at-random for the incomplete instance f

BAYESIAN

- IDM-based NCC (Zaffalon, 2001)
- Efficient classification algorithm based optimization under the linear constraints

FREQUENTIST

- LIK-based NCC (this paper)
- Efficient classification algorithm based on analytical derivation of the likelihood upper envelope (α -cuts identified numerically)

Feature problem zero joint counts $n(C = c', F_i = f_i) = 0$ make the classifier widely imprecisei

 \mathbf{NCC}_{ϵ} (Corani & Benavoli, 2010)

- Shrink the IDM set of priors by linear-vacuous contamination
- NCC_{$\epsilon=0$} =NBC, NCC_{$\epsilon=1$} vacuous

 \mathbf{NCC}_{α} (this paper)

• "semi-supervised" learning $\mathcal{D} := \mathcal{D} \cup (C = *, \mathbf{F} = \tilde{\mathbf{f}})$

 Assume C missing-at-random for the incomplete instance f

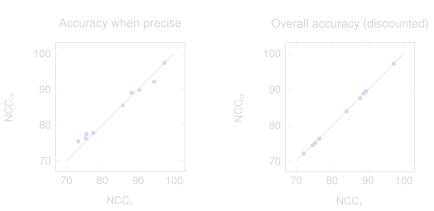
EPISODE III

"The final duel"

Comparing the two classifiers (assuming you know how to deal with it)

with JNCC2 (idsia.ch/~giorgio/jncc2.html)

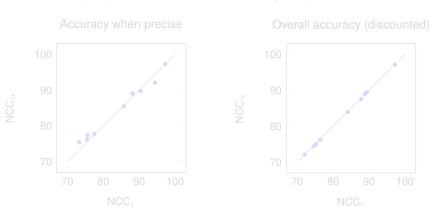
 (α, ϵ) tuned to reach same average output size



Very similar performances, according to the available performance descriptors

with JNCC2 (idsia.ch/~giorgio/jncc2.html)

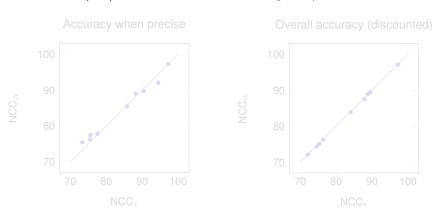
 (α, ϵ) tuned to reach same average output size



Very similar performances, according to the available performance descriptors

with JNCC2 (idsia.ch/~giorgio/jncc2.html)

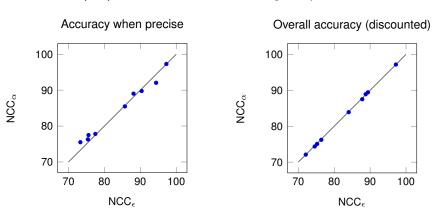
 (α, ϵ) tuned to reach same average output size



Very similar performances, according to the available performance descriptors

with JNCC2 (idsia.ch/~giorgio/jncc2.html)

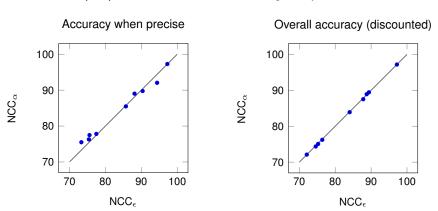
 (α, ϵ) tuned to reach same average output size



Very similar performances, according to the available performance descriptors

with JNCC2 (idsia.ch/~giorgio/jncc2.html)

 (α, ϵ) tuned to reach same average output size



Very similar performances, according to the available performance descriptors

THE END

(ALMOST)

- The agnostic is still agnostic
- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially Future work: indecision in NCC_{ϵ} could be resolved by NCC_{α} minimum α resolving indecision as a confidence level

The agnostic is still agnostic

- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially! Future work: indecision in NCC_{ϵ} could be resolved by NCC_{α} minimum α resolving indecision as a confidence level

- The agnostic is still agnostic
- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially! Future work: indecision in NCC_{ϵ} could be resolved by NCC_{α} minimum α resolving indecision as a confidence level

- The agnostic is still agnostic
- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially! Future work: indecision in NCC_{ϵ} could be resolved by NCC_{α} minimum α resolving indecision as a confidence level

- The agnostic is still agnostic
- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially! Future work: indecision in NCC_{ϵ} could be resolved by NCC_{α} minimum α resolving indecision as a confidence level

- The agnostic is still agnostic
- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially! Future work: indecision in NCC $_{\epsilon}$ could be resolved by NCC $_{\alpha}$ minimum α resolving indecision as a confidence level

- The agnostic is still agnostic
- None of the two classifiers clearly outperforms the other (according to the actual metrics)
- "Bayesian" approach has a clear behavioural interpretation
- "Frequentist" approach promising for analytical results even with more complex independence structures
- If no classifier outperforms the other, use them sequentially! Future work: indecision in NCC $_{\epsilon}$ could be resolved by NCC $_{\alpha}$ minimum α resolving indecision as a confidence level

THE END

All characters appearing in this work are fictitious. Any resemblance to real persons, living or dead, is purely coincidental.