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EPISODE I

“Crises of Faith”

Learning probabilistic
models from data



Learning from data D (about random var C, c ∈ C)

multinomial likelihood P(D) =
∏

c∈C θ
n(c)
c (counts n)

BAYESIAN

prior × likelihood = posterior

× =

MAP

FREQUENTIST

likelihood (only)

ML

priors × likelihood = posteriors

IDM prior ignorance with Dir(st)

t ∈ T :=
{

t
∣∣∑

c∈C t(c) = 1, t(c) > 0
}

s equivalent sample size
(s = 0 precise, s →∞ vacuous)

models with likelihood ≥ threshold

LIK refine starting credal set P

Pα := {P ∈ P |P(D) ≥ αPML(D)}
threshold α ∈ [0, 1] (Pα ⊆ P)

(Pα=0 ≡ P, Pα=1 = PML)
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EPISODE II

“Becoming adults”

Credal classification



Probabilistic Classifiers
Class C, Features F := (F1, . . . ,Fm), fi ∈ Fi

complete data D := {(c(j), f(j))}d
j=1

Which class label assign to instance F = f̃ ?

Precise classifiers learn joint P(C,F)

Assign to f̃ most probable class label

arg maxc′∈C P(c′, f̃)

this is a classifier: (F1 × . . .×Fm)→ C

Credal classifiers learn joint credal set P(C,F)

Set of optimal class labels (e.g., maximality)

{c′ ∈ C|@c′′ ∈ C : P(c′′, f̃) > P(c′, f̃),∀P ∈ P}

A credal classifier: (F1 × . . .×Fm)→ 2C

(may) return multiple classes

naive assumption

“given the class,
features are
independent”

C

F1

F2

. . .

Fm−1

Fm



Probabilistic Classifiers
Class C, Features F := (F1, . . . ,Fm), fi ∈ Fi

complete data D := {(c(j), f(j))}d
j=1

Which class label assign to instance F = f̃ ?

Precise classifiers learn joint P(C,F)

Assign to f̃ most probable class label

arg maxc′∈C P(c′, f̃)

this is a classifier: (F1 × . . .×Fm)→ C

Credal classifiers learn joint credal set P(C,F)

Set of optimal class labels (e.g., maximality)

{c′ ∈ C|@c′′ ∈ C : P(c′′, f̃) > P(c′, f̃),∀P ∈ P}

A credal classifier: (F1 × . . .×Fm)→ 2C

(may) return multiple classes

naive assumption

“given the class,
features are
independent”

C

F1

F2

. . .

Fm−1

Fm



Probabilistic Classifiers
Class C, Features F := (F1, . . . ,Fm), fi ∈ Fi

complete data D := {(c(j), f(j))}d
j=1

Which class label assign to instance F = f̃ ?

Precise classifiers learn joint P(C,F)

Assign to f̃ most probable class label

arg maxc′∈C P(c′, f̃)

this is a classifier: (F1 × . . .×Fm)→ C

Credal classifiers learn joint credal set P(C,F)

Set of optimal class labels (e.g., maximality)

{c′ ∈ C|@c′′ ∈ C : P(c′′, f̃) > P(c′, f̃),∀P ∈ P}

A credal classifier: (F1 × . . .×Fm)→ 2C

(may) return multiple classes

naive assumption

“given the class,
features are
independent”

C

F1

F2

. . .

Fm−1

Fm



Probabilistic Classifiers
Class C, Features F := (F1, . . . ,Fm), fi ∈ Fi

complete data D := {(c(j), f(j))}d
j=1

Which class label assign to instance F = f̃ ?

Precise classifiers learn joint P(C,F)

Assign to f̃ most probable class label

arg maxc′∈C P(c′, f̃)

this is a classifier: (F1 × . . .×Fm)→ C

Credal classifiers learn joint credal set P(C,F)

Set of optimal class labels (e.g., maximality)

{c′ ∈ C|@c′′ ∈ C : P(c′′, f̃) > P(c′, f̃),∀P ∈ P}

A credal classifier: (F1 × . . .×Fm)→ 2C

(may) return multiple classes

naive assumption

“given the class,
features are
independent”

C

F1

F2

. . .

Fm−1

Fm



Probabilistic Classifiers
Class C, Features F := (F1, . . . ,Fm), fi ∈ Fi

complete data D := {(c(j), f(j))}d
j=1

Which class label assign to instance F = f̃ ?

Precise classifiers learn joint P(C,F)

Assign to f̃ most probable class label

arg maxc′∈C P(c′, f̃)

this is a classifier: (F1 × . . .×Fm)→ C

Credal classifiers learn joint credal set P(C,F)

Set of optimal class labels (e.g., maximality)

{c′ ∈ C|@c′′ ∈ C : P(c′′, f̃) > P(c′, f̃),∀P ∈ P}

A credal classifier: (F1 × . . .×Fm)→ 2C

(may) return multiple classes

naive assumption

“given the class,
features are
independent”

C

F1

F2

. . .

Fm−1

Fm



Naive Credal Classifiers (NCC)

BAYESIAN

IDM-based NCC (Zaffalon, 2001)

Efficient classification algorithm
based optimization under the
linear constraints

FREQUENTIST

LIK-based NCC (this paper)

Efficient classification algorithm
based on analytical derivation of
the likelihood upper envelope
(α-cuts identified numerically)

Feature problem zero joint counts n(C = c′,Fi = fi) = 0
make the classifier widely imprecisei

NCCε (Corani & Benavoli, 2010)

Shrink the IDM set of priors by
linear-vacuous contamination
NCCε=0 =NBC, NCCε=1 vacuous

NCCα (this paper)

“semi-supervised” learning
D := D ∪ (C = ∗,F = f̃)

Assume C missing-at-random
for the incomplete instance f̃
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EPISODE III

“The final duel”

Comparing the two classifiers
(assuming you know how to deal with it)



Extensive tests on UCI datasets

with JNCC2 (idsia.ch/∼giorgio/jncc2.html)

(α, ε) tuned to reach same average output size

70 80 90 100

70

80

90

100

NCCε

N
C

C
α

Accuracy when precise

70 80 90 100

70

80

90

100

NCCε

N
C

C
α

Overall accuracy (discounted)

Very similar performances, according to
the available performance descriptors
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THE END
(ALMOST)



What about the agnostic?

The agnostic is still agnostic

None of the two classifiers clearly outperforms the other

(according to the actual metrics)

“Bayesian” approach has a clear behavioural interpretation

“Frequentist” approach promising for analytical results even with

more complex independence structures

If no classifier outperforms the other, use them sequentially !

Future work: indecision in NCCε could be resolved by NCCα

minimum α resolving indecision as a confidence level
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All characters appearing in this work are

fictitious. Any resemblance to real persons,

living or dead, is purely coincidental.
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