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imprecise probabilities

I the uncertain beliefs of a Bayesian agent b about the state of the world
ω ∈ Ω are described by a (finitely additive) probability measure Pb, which is
updated to Pb( · |A) by “Bayes’ rule” when an event A ⊆ Ω is observed

I an imprecise probability model P = {Pb : b ∈ B} can be seen as a group B
of Bayesian agents deciding by unanimity, but otherwise not interacting

I in particular, P is updated to {Pb( · |A) : b ∈ B} by “generalized Bayes’
rule” when an event A is observed
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unreliable probabilities

I Gärdenfors and Sahlin (1982) proposed a hierarchical model consisting of P
(first level) and a measure ρ of reliability/credibility of the Bayesian agents
b ∈ B (second level)

I the hierarchical model generalizes the imprecise probability model
(corresponding to the case in which all Bayesian agents are equally
reliable/credible), but the second-order “measure” ρ does not have a clear
interpretation or mathematical form

I examples of similar models:

I ρ is a possibility measure with no clear interpretation (Zadeh, 1984; Buckley,
2003)

I ρ is a probability measure (Good, 1965; Sahlin, 1983)

I ρ is a possibility measure with an upper probability interpretation (Walley,
1997; de Cooman, 2005)
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statistical learning

I when an event A is observed, the “generalized Bayes’ rule” discards the
information in A for discrimination between b, b′ ∈ B (Kullback and Leibler,
1951), or weight of evidence in favor of b against b′ (Good, 1950):

log
Pb(A)

Pb′(A)

I this information is summarized by the (second-order) likelihood function
λA : b 7→ Pb(A), which would be used to update a second-order probability
measure ρ (precise or imprecise)

I the likelihood function λA describes the (relative) ability of the Bayesian
agents to predict the event A
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example: coin tossing
I a particular coin is known to be either fair or loaded with a 3

4 probability for
one of the two sides

I the Bayesian agent b believes that the coin is either fair or loaded toward
heads (with the same prior probability 1

2 for these two possibilities), while
the Bayesian agent b′ believes that the coin is either fair or loaded toward
tails (with the same prior probability 1

2 for these two possibilities):

Pb(heads in the next toss) = 0.625

Pb′(heads in the next toss) = 0.375

I the event A = {77 heads in the first 100 tosses} is observed:

Pb(heads in the next toss |A) ≈ 0.745

Pb′(heads in the next toss |A) ≈ 0.500

I weight of evidence in favor of b against b′:

log
Pb(A)

Pb′(A)
= log

λA(b)

λA(b′)
≈ log(4.32× 106) ≈ 66.4db
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hierarchical model

I the relative reliability/credibility of the Bayesian agents b ∈ B can be
interpreted as the relative quality of their past forecasts, which is described
by the likelihood function λA (where A represents all past observations, real
or imagined)

I the second-order measure ρ of (relative) reliability/credibility can thus be
identified with the likelihood function λA (Cattaneo, 2008), or with its
normalized extension to subsets S ⊆ B: the likelihood ratio

ΛA : S 7→
supb∈S λA(b)

supb′∈B λA(b′)

I ΛA is a possibility measure, whose updating rule (unlike the ones of similar
models with second-order possibility measures) seems to fit with the informal
description of Gärdenfors and Sahlin (1982): P is updated by “generalized
Bayes’ rule” and ΛA is updated to ΛA∩B when an event B is observed
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complete ignorance

I a constant likelihood function λA describes the case of no information for
discrimination among the Bayesian agents b ∈ B (very intuitive idea): in this
case, the possibility measure ΛA is the vacuous upper probability measure on
B (complete ignorance about b implies complete ignorance about f (b), for
all functions f )

I basic advantage of the hierarchical model over:

I the Bayesian model: the ability to describe the state of complete ignorance

I the imprecise probability model: the ability to get out of the state of
complete ignorance

I for the imprecise probability model, the state of complete ignorance
corresponds to a group of Bayesian agents who are absolutely certain of
different things (there is no lack of information: on the contrary, there is
plenty of contradictory information), while for the hierarchical model the
state of complete ignorance corresponds to the lack of information for
evaluating the reliability/credibility of these agents
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conclusion

I some advantages of the hierarchical model over the imprecise probability
model:

I generality (the Bayesian agents do not have to be equally reliable/credible)

I ability to get out of the state of complete ignorance

I connection with classical statistics (repeated sampling properties of
likelihood methods)

I continuity of updating rule (Cattaneo, 2014)

I manageability (reduction of imprecision, information fusion, . . . )

I a drawback of the hierarchical model is the lack of a justification of the
updating rule in terms of coherence or avoidance of sure loss

I conflict between statistical learning and behaviorist interpretation of updating
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