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Classification

Complete data D = {(x (i)
0 ,x(i))}n

i=1 about class variable X0

and (discrete) features X := (X1, . . . ,Xn)

Class label x∗0 ∈ ΩX0 of a new instance x̃ of the features?

Probabilistic approaches learn P(X0,X) from D

optimal class has the highest posterior x∗0 := arg maxx0 P(x0|x̃)

Equivalently, dominance test : ∀x ′0, x ′′0 ∈ ΩX0 check

P(x ′0|x̃)
P(x ′′0 |x̃)

=
P(x ′0,x̃)
P(x ′′0 ,x̃)

> 1

x∗0 is the only undominated class

Posterior probabilities∝ joint probabilities
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Classification with Bayesian networks

Bayesian networks: a graph G to depict
conditional independencies in (X0,X)

G induces a factorization in the joint

P(x0,x) =
n∏

i=0

P(xi |πi )

Dominance test rewrites as

P(x ′0,x̃)
P(x ′0,x̃) =

∏n
i=0

P(x ′i |π′i )
P(x ′′i |π′′i ) > 1

Factors not including X0 are equal to one

focusing on the Markov blanket of X0

X0
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Classification with credal networks

Few data⇒ unreliable learning of P(Xi |πi )

More reliable with sets of prob functions

A credal set of joint P(X0,X) , instead of a
single P(X0,X) (all Bayesian nets over G)
How to classify instances?
x ′0 dominates x ′′0 iff this happens for each
Bayesian net ( maximality ), i.e.,

minP(X0,X)∈P(X0,X)
∏

Xi∈Blank(X0)
P(x′i |π

′
i )

P(x′′i |π
′′
i ) > 1

Not always a single optimal class, can be
also a set of undominated classes

This is a credal classifier possibly
assigning multiple classes to test instance

X0
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Likelihood-based learning sets of distributions

Frequentist: no priors, learning
from the likelihood P(D)

Given a set of models P,

PML := arg max
P∈P

P(D)

More robust: all the models s.t.
likelihood ≥ threshold

Pα := {P ∈ P |P(D) ≥ αPML(D)}

threshold α ∈ [0, 1], Pα ⊆ P

(Pα=0 ≡ P, Pα=1 = PML)

P ∈ P

ML

PML

α-cut

Pα
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Likelihood-based classification

P is any BN quantification
D and α to shrink P to Pα
Dominance test

minP(X0,X)∈Pα log P(x′0|x̃)
P(x′′0 |x̃)

> 0

Monte Carlo approach
Sampling P from P
if P: P(D)

PML(D)
> α AND P(x′0|x̃)

P(x′′0 |x̃) < 1
then no dominance

Analytical methods
Profile lik (upper envelope)
detect (numerically) α-cut

log
Pθ (x
′
0|x̃)

Pθ (x
′′
0 |x̃)

α = .15

α = 1

0
dominance threshold

Pθ (x
′
0|x̃) = Pθ (x

′′
0 |x̃)

left

maximum-likelihood

α-cut
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Our formula

Parametric formulae for the profile likelihood (complete data){(
Pt (x ′0, x̃1, . . . , x̃n)

Pt (x ′′0 , x̃1, . . . , x̃n)
,Pt (D)

)
: t ∈ [a,b]

}

For the naive structure (ISIPTA ’11)

For general topologies (this paper)

First credal classifier for BNs with general topologies!

Bayesian-like approaches only for naive Bayes and TAN
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Our formula

a := −min {n(x ′0, π̃0),n(x̃1, x ′0, π̃1), . . . ,n(x̃k , x ′0, π̃k )}

b := min {n(x ′′0 , π̃0),n(x̃1, x ′′0 , π̃1), . . . ,n(x̃k , x ′′0 , π̃k )}

For each t ∈ [a,b], let us consider the following functions:

x(t) :=
n(x ′0, π̃0) + t
n̂(x ′′0 , π̃0)− t

·
k∏

i=1

n(x̃i ,x′0,π̃i )+t
n(x′0,π̃i )+t

n(x̃i ,x′′0 ,π̃i )−t
n(x′′0 ,π̃i )−t

y(t) := [n(x ′0, π̃0) + t ]n(x
′
0,π̃0) · [n(x ′′0 , π̃0)− t ]n(x

′′
0 ,π̃0)

·
k∏

i=1

[
[n(x̃i , x ′0, π̃i ) + t ]n(x̃i ,x′0,π̃i )[

n(x ′0, π̃i ) + t
]n(x′0,π̃i )

·
[n(x̃i , x ′′0 , π̃i )− t ]n(x̃i ,x′′0 ,π̃i )[

n(x ′′0 , π̃i )− t
]n(x′′0 ,π̃i )

]



Coping with zero counts

With zero counts, classifier becomes unnecessarily imprecise

Known issue (also for Bayesian-like approaches)

Solved by a semi-supervised approach

test instance as an incomplete observation (X0 =?,X = x̃)

EM to complete the missing observation with fractionary counts

Use formula as for complete data

This solve the zero count problem
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Experiments

If determinate the class returned by the credal classifier
is the same returned by the Bayesian network
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Conclusions and Outlooks

Conclusions

A credal classifier for general topologies

Solve zero-counts problem with a semi-supervised technique

Separate easy-to-classify from hard instances

Outlooks

Comparisons with other credal classifiers on specific topologies

Pre-processing for other (precise) classifiers

Applications to state-of-the-art approaches (AODE)


