On the estimability of interval probabilities

Marco Cattaneo

School of Mathematics and Physical Sciences University of Hull

14 March 2018

assuming that $p_n = p$,

can p be learned from data (i.e. consistently estimated)?

assuming that $p_n = p$,

can p be learned from data (i.e. consistently estimated)? YES

assuming that $p_n \in [\underline{p}, \overline{p}]$, can $[\underline{p}, \overline{p}]$ be learned from data (i.e. consistently estimated)?

 $P(A) \in [0, 1]$: probability of event A

frequentist

subjective

 $P(A) \in [0,1]$: probability of event A

frequentist

subjective

 $P(A) \approx$ relative frequency of occurrence of A in a large number of independent repetitions

 $P(A) \in [0,1]$: probability of event A

frequentist

 $P(A) \approx$ relative frequency of occurrence of A in a large number of independent repetitions

subjective

P(A) = fair price for a security that pays 1 if A occurs, and 0 otherwise

 $P(A) \in [0,1]$: probability of event A

frequentist

 $P(A) \approx$ relative frequency of occurrence of A in a large number of independent repetitions

subjective

P(A) = fair price for a security that pays 1 if A occurs, and 0 otherwise

 $[\underline{P}(A), \overline{P}(A)] \subseteq [0, 1]$: interval/imprecise probability of event A

 $P(A) \in [0, 1]$: probability of event A

frequentist

 $P(A) \approx$ relative frequency of occurrence of A in a large number of independent repetitions

subjective

P(A) = fair price for a security that pays 1 if A occurs, and 0 otherwise

 $[\underline{P}(A), \overline{P}(A)] \subseteq [0, 1]$: interval/imprecise probability of event A

subjective

 $\underline{P}(A), \overline{P}(A) =$ maximum buying price and minimum selling price for a security that pays 1 if A occurs, and 0 otherwise

 $P(A) \in [0, 1]$: probability of event A

frequentist

 $P(A) \approx$ relative frequency of occurrence of A in a large number of independent repetitions

subjective

P(A) = fair price for a security that pays 1 if A occurs, and 0 otherwise

 $[\underline{P}(A), \overline{P}(A)] \subseteq [0, 1]$: interval/imprecise probability of event A

frequentist $\underline{P}(A), \overline{P}(A) \approx ?$

subjective

 $\underline{P}(A), \overline{P}(A) =$ maximum buying price and minimum selling price for a security that pays 1 if A occurs, and 0 otherwise

assuming that $p_n \in [\underline{p}, \overline{p}]$, can $[\underline{p}, \overline{p}]$ be learned from data (i.e. consistently estimated)?

assuming that $p_n \in [\underline{p}, \overline{p}]$, can $[\underline{p}, \overline{p}]$ be learned from data (i.e. consistently estimated)? NO

assuming that $p_n \in [\underline{p}, \overline{p}] = [\inf p_n, \sup p_n],$ can $[\underline{p}, \overline{p}]$ be learned from data (i.e. consistently estimated)?

assuming that $p_n \in [\underline{p}, \overline{p}] = [\inf p_n, \sup p_n],$ can $[\underline{p}, \overline{p}]$ be learned from data (i.e. consistently estimated)? NO

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n],$ can $[p, \overline{p}]$ be learned from data (i.e. consistently estimated)?

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n],$ can $[p, \overline{p}]$ be learned from data (i.e. consistently estimated)? NO

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

can $[p, \overline{p}]$ be learned from data (i.e. consistently estimated), when:

• \mathcal{I} consists of all intervals of a given length δ ?

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

can $[p, \overline{p}]$ be learned from data (i.e. consistently estimated), when:

• \mathcal{I} consists of all intervals of a given length δ ? NO (except when δ is 0 or 1)

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

- ▶ \mathcal{I} consists of all intervals of a given length δ ? NO (except when δ is 0 or 1)
- \mathcal{I} is finite?

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

- \mathcal{I} consists of all intervals of a given length δ ? NO (except when δ is 0 or 1)
- \mathcal{I} is finite? NO (in general)

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

- \mathcal{I} consists of all intervals of a given length δ ? NO (except when δ is 0 or 1)
- ▶ *I* is finite? NO (in general)
- I consists of pairwise disjoint intervals?

assuming that $p_n \in [\underline{p}, \overline{p}] = [\liminf p_n, \limsup p_n] \in \mathcal{I}$, where \mathcal{I} is a given set of probability intervals,

- \mathcal{I} consists of all intervals of a given length δ ? NO (except when δ is 0 or 1)
- ▶ *I* is finite? NO (in general)
- ► *I* consists of pairwise disjoint intervals? YES

theorem

Let X_1, X_2, \ldots be a sequence of independent random variables with $X_n \sim Ber(p_n)$, and let \mathcal{I} be a set of closed (possibly degenerate) subintervals of [0, 1].

Then the following two statements are equivalent:

(i) There are (sequences of) estimators $\underline{\pi}_n, \overline{\pi}_n : \{0,1\}^n \to [0,1]$ such that for all $[p,\overline{p}] \in \mathcal{I}$ and all sequences $p_n \in [p,\overline{p}]$ with [lim inf p_n , lim sup p_n] = $[p,\overline{p}]$,

$$[\underline{\pi}_n(X_1,\ldots,X_n), \overline{\pi}_n(X_1,\ldots,X_n)] \xrightarrow{p} [\underline{p},\overline{p}].$$

(ii) The elements of $\mathcal{I} \setminus \{[0,0], [1,1]\}$ are pairwise disjoint.

proof: (ii)
$$\Rightarrow$$
 (i)

$$\underline{\pi}_n(X_1,\ldots,X_n) = \begin{cases} 1 & \text{if } X_1 = \cdots = X_n = 1, \\ \inf \left\{ \underline{p} : [\underline{p},\overline{p}] \in \mathcal{I}, \ \overline{X}_n < \overline{p} + c_n \right\} & \text{otherwise,} \end{cases}$$

$$\overline{\pi}_n(X_1,\ldots,X_n) = \begin{cases} 0 & \text{if } X_1 = \cdots = X_n = 0, \\ \sup \left\{ \overline{p} : [\underline{p},\overline{p}] \in \mathcal{I}, \ \overline{X}_n > \underline{p} - c_n \right\} & \text{otherwise,} \end{cases}$$

where c_n is any sequence of real numbers such that $\lim c_n = 0$ and $\lim \sqrt{n} c_n = +\infty$, while $\inf \emptyset$ and $\sup \emptyset$ can be defined arbitrarily.

Let $[\underline{p}, \overline{p}], [\underline{p}', \overline{p}'] \in \mathcal{I} \setminus \{[0, 0], [1, 1]\}$ be different. Then there is a sequence of events $A_n \in \sigma(X_1, \dots, X_n)$ such that

$$\lim P(A_n) = \begin{cases} 1 & \text{if } p_n \in [\liminf p_n, \limsup p_n] = [\overline{p}, \overline{p}], \\ 0 & \text{if } p_n \in [\limsup p_n, \limsup p_n] = [\overline{p'}, \overline{p'}]. \end{cases}$$

Let $[\underline{p}, \overline{p}], [\underline{p}', \overline{p}'] \in \mathcal{I} \setminus \{[0, 0], [1, 1]\}$ be different. Then there is a sequence of events $A_n \in \sigma(X_1, \ldots, X_n)$ such that

$$\lim P(A_n) = \begin{cases} 1 & \text{if } p_n \in [\liminf p_n, \limsup p_n] = [\overline{p}, \overline{p}], \\ 0 & \text{if } p_n \in [\limsup p_n, \limsup p_n] = [\overline{p'}, \overline{p'}]. \end{cases}$$

Now assume that p_1, p_2, \ldots is also a sequence of independent random variables. The dominated/bounded convergence theorem implies that

$$\lim P(A_n) = \begin{cases} 1 & \text{if a.s. } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}, \overline{p}], \\ 0 & \text{if a.s. } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}', \overline{p}']. \end{cases}$$

Let $[\underline{p}, \overline{p}], [\underline{p}', \overline{p}'] \in \mathcal{I} \setminus \{[0, 0], [1, 1]\}$ be different. Then there is a sequence of events $A_n \in \sigma(X_1, \ldots, X_n)$ such that

$$\lim P(A_n) = \begin{cases} 1 & \text{if } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}, \overline{p}], \\ 0 & \text{if } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}', \overline{p}']. \end{cases}$$

Now assume that p_1, p_2, \ldots is also a sequence of independent random variables. The dominated/bounded convergence theorem implies that

$$\lim P(A_n) = \begin{cases} 1 & \text{if a.s. } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}, \overline{p}], \\ 0 & \text{if a.s. } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}', \overline{p}']. \end{cases}$$

Furthermore, X_1, X_2, \ldots are independent with $X_n \sim Ber(E(p_n))$.

Let $[\underline{p}, \overline{p}], [\underline{p}', \overline{p}'] \in \mathcal{I} \setminus \{[0, 0], [1, 1]\}$ be different. Then there is a sequence of events $A_n \in \sigma(X_1, \ldots, X_n)$ such that

$$\lim P(A_n) = \begin{cases} 1 & \text{if } p_n \in [\liminf p_n, \limsup p_n] = [\overline{p}, \overline{p}], \\ 0 & \text{if } p_n \in [\liminf p_n, \limsup p_n] = [\overline{p'}, \overline{p'}]. \end{cases}$$

Now assume that p_1, p_2, \ldots is also a sequence of independent random variables. The dominated/bounded convergence theorem implies that

$$\lim P(A_n) = \begin{cases} 1 & \text{if a.s. } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}, \overline{p}], \\ 0 & \text{if a.s. } p_n \in [\liminf p_n, \limsup p_n] = [\underline{p}', \overline{p}']. \end{cases}$$

Furthermore, X_1, X_2, \ldots are independent with $X_n \sim Ber(E(p_n))$.

Hence, $\underline{p} \geq \overline{p}'$ or $\underline{p}' \geq \overline{p}$, because otherwise there are two probability distributions for p_n on $\{\underline{p}, \overline{p}\}$ and $\{\underline{p}', \overline{p}'\}$, respectively, with the same expectation and positive probability for both endpoints.

Without loss of generality, assume that $\underline{p} \ge \overline{p}'$, and let $P_{(p'_n)}$ denote the probability distribution of X_1, X_2, \ldots corresponding to the (deterministic) sequence $p_n = p'_n$. The second Borel–Cantelli lemma and the above results imply that

$$\delta\left(P_{\left(\underline{p}+\frac{\alpha}{n}\left(\overline{p}-\underline{p}\right)\right)}, P_{\left(\overline{p}'-\frac{\alpha}{n}\left(\overline{p}'-\underline{p}'\right)\right)}\right) = 1$$

for all $\alpha \in (0, 1)$, where δ is the total variation distance.

Without loss of generality, assume that $\underline{p} \ge \overline{p}'$, and let $P_{(p'_n)}$ denote the probability distribution of X_1, X_2, \ldots corresponding to the (deterministic) sequence $p_n = p'_n$. The second Borel–Cantelli lemma and the above results imply that

$$\delta\left(\mathsf{P}_{\left(\underline{p}+\frac{\alpha}{n}\,(\overline{p}-\underline{p})\right)},\,\mathsf{P}_{\left(\overline{p}'-\frac{\alpha}{n}\,(\overline{p}'-\underline{p}')\right)}\right)=1$$

for all $\alpha \in (0, 1)$, where δ is the total variation distance.

Using Pinsker's inequality (which connects δ to the Kullback–Leibler divergence D_{KL}) and Weierstrass's definition of the gamma function we obtain

$$\begin{split} \delta\left(P_{\left(\underline{p}+\frac{\alpha}{n}\,(\overline{p}-\underline{p})\right)},\,P_{(\underline{p})}\right) &\leq \sqrt{\frac{1}{2}\,D_{\mathsf{KL}}\left(P_{(\underline{p})} \parallel P_{\left(\underline{p}+\frac{\alpha}{n}\,(\overline{p}-\underline{p})\right)}\right)} = \\ &= \sqrt{\underline{p}\,\ln\Gamma\left(\frac{\underline{p}+\alpha\,(\overline{p}-\underline{p})}{\underline{p}}\right) + (1-\underline{p})\,\ln\Gamma\left(\frac{1-\underline{p}-\alpha\,(\overline{p}-\underline{p})}{1-\underline{p}}\right)} \xrightarrow{\alpha\to 0} 0. \end{split}$$

Without loss of generality, assume that $\underline{p} \ge \overline{p}'$, and let $P_{(p'_n)}$ denote the probability distribution of X_1, X_2, \ldots corresponding to the (deterministic) sequence $p_n = p'_n$. The second Borel–Cantelli lemma and the above results imply that

$$\delta\left(\mathsf{P}_{\left(\underline{p}+\frac{\alpha}{n}\,(\overline{p}-\underline{p})\right)},\,\mathsf{P}_{\left(\overline{p}'-\frac{\alpha}{n}\,(\overline{p}'-\underline{p}')\right)}\right)=1$$

for all $\alpha \in (0, 1)$, where δ is the total variation distance.

Using Pinsker's inequality (which connects δ to the Kullback–Leibler divergence D_{KL}) and Weierstrass's definition of the gamma function we obtain

$$\begin{split} \delta\left(P_{\left(\underline{p}+\frac{\alpha}{n}\,(\overline{p}-\underline{p})\right)},\,P_{(\underline{p})}\right) &\leq \sqrt{\frac{1}{2}\,D_{\mathsf{KL}}\left(P_{(\underline{p})} \parallel P_{\left(\underline{p}+\frac{\alpha}{n}\,(\overline{p}-\underline{p})\right)}\right)} = \\ &= \sqrt{\underline{p}\,\ln\Gamma\left(\frac{\underline{p}+\alpha\,(\overline{p}-\underline{p})}{\underline{p}}\right) + (1-\underline{p})\,\ln\Gamma\left(\frac{1-\underline{p}-\alpha\,(\overline{p}-\underline{p})}{1-\underline{p}}\right)} \xrightarrow{\alpha\to 0} 0. \end{split}$$

Analogously, $\delta\left(P_{(\overline{p}')}, P_{(\overline{p}'-\frac{\alpha}{n}(\overline{p}'-\underline{p}'))}\right) \xrightarrow{\alpha \to 0} 0$, and thus the triangle inequality implies $\underline{p} > \overline{p}'$.

Marco Cattaneo @ University of Hull On the estimability of interval probabilities