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interpretations of probability

P(A) ∈ [0, 1]: probability of event A

frequentist

P(A) ≈ relative frequency of occurrence
of A in a large number of independent
repetitions

subjective

P(A) = fair price for a security that pays
1 if A occurs, and 0 otherwise

[P(A),P(A)] ⊆ [0, 1]: interval/imprecise probability of event A

frequentist

P(A),P(A) ≈ ?

subjective

P(A),P(A) = maximum buying price
and minimum selling price for a security
that pays 1 if A occurs, and 0 otherwise
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assuming that pn ∈ [p, p] = [lim inf pn, lim sup pn] ∈ I,
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theorem

Let X1,X2, . . . be a sequence of independent random variables with Xn ∼ Ber(pn),
and let I be a set of closed (possibly degenerate) subintervals of [0, 1].

Then the following two statements are equivalent:

(i) There are (sequences of) estimators πn, πn : {0, 1}n → [0, 1] such that for all
[p, p] ∈ I and all sequences pn ∈ [p, p] with [lim inf pn, lim sup pn] = [p, p],

[πn(X1, . . . ,Xn), πn(X1, . . . ,Xn)]
p→ [p, p].

(ii) The elements of I \ {[0, 0], [1, 1]} are pairwise disjoint.
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proof: (ii) ⇒ (i)

πn(X1, . . . ,Xn) =

{
1 if X1 = · · · = Xn = 1,
inf

{
p : [p, p] ∈ I, X̄n < p + cn

}
otherwise,

πn(X1, . . . ,Xn) =

{
0 if X1 = · · · = Xn = 0,
sup

{
p : [p, p] ∈ I, X̄n > p − cn

}
otherwise,

where cn is any sequence of real numbers such that lim cn = 0 and
lim

√
n cn = +∞, while inf ∅ and sup∅ can be defined arbitrarily.
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proof: (i) ⇒ (ii)

Let [p, p], [p′, p′] ∈ I \ {[0, 0], [1, 1]} be different.

Then there is a sequence of events An ∈ σ(X1, . . . ,Xn) such that

limP(An) =

{
1 if pn ∈ [lim inf pn, lim sup pn] = [p, p],
0 if pn ∈ [lim inf pn, lim sup pn] = [p′, p′].

Now assume that p1, p2, . . . is also a sequence of independent random variables.

The dominated/bounded convergence theorem implies that

limP(An) =

{
1 if a.s. pn ∈ [lim inf pn, lim sup pn] = [p, p],
0 if a.s. pn ∈ [lim inf pn, lim sup pn] = [p′, p′].

Furthermore, X1,X2, . . . are independent with Xn ∼ Ber (E (pn)).

Hence, p ≥ p′ or p′ ≥ p, because otherwise there are two probability distributions
for pn on {p, p} and {p′, p′}, respectively, with the same expectation and positive
probability for both endpoints.
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proof: (i) ⇒ (ii)
Without loss of generality, assume that p ≥ p′, and let P(p′

n)
denote the probability

distribution of X1,X2, . . . corresponding to the (deterministic) sequence pn = p′n.

The second Borel–Cantelli lemma and the above results imply that

δ
(
P(p+α

n (p−p)), P(p′−α
n (p′−p′))

)
= 1

for all α ∈ (0, 1), where δ is the total variation distance.

Using Pinsker’s inequality (which connects δ to the Kullback–Leibler divergence
DKL) and Weierstrass’s definition of the gamma function we obtain

δ
(
P(p+α

n (p−p)), P(p)

)
≤

√
1
2 DKL

(
P(p) ∥P(p+α

n (p−p))

)
=

=

√
p ln Γ

(
p+α (p−p)

p

)
+ (1− p) ln Γ

(
1−p−α (p−p)

1−p

)
α→0−→ 0.

Analogously, δ
(
P(p′), P(p′−α

n (p′−p′))

)
α→0−→ 0, and thus the triangle inequality

implies p > p′.
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