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capacities

I let µ be a capacity on a set Ω

, i.e., µ : P(Ω) → [0, 1] such that:

I µ(∅) = 0 and µ(Ω) = 1

I monotonicity: A ⊂ B ⇒ µ(A) ≤ µ(B)

I capacities can be interpreted as quantitative descriptions of uncertain belief
or information about ω ∈ Ω, in particular:

I additive capacities: A ∩ B = ∅ ⇒ µ(A ∪ B) = µ(A) + µ(B)

,

e.g., probability measures in Bayesian statistics
(de Finetti, 1974–1975; Savage, 1972)

I maxitive capacities: A ∩ B = ∅ ⇒ µ(A ∪ B) = µ(A) ∨ µ(B),

e.g., likelihood ratios in classical statistics
(Neyman and Pearson, 1928; Cattaneo, 2013)

I to avoid trivial results, we assume that 0 < µ(C ) < 1 for some C ⊂ Ω
(in particular, µ cannot be additive and maxitive at the same time)
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extensions of capacities
I an extension of µ to B (the set of all bounded functions f : Ω → R) is a

functional F : B → R such that F (IA) = µ(A)

I when µ describes the uncertain belief or information about ω ∈ Ω, an
extension F of µ to B can be interpreted as an evaluation of the uncertain
quantities f (ω) ∈ R, and can be used as a basis for decision making when
functions f ∈ B represent the uncertain loss (or minus utility) of possible
decisions, in particular:

I additive extensions: F (f + g) = F (f ) + F (g)

,

e.g., evaluations by average of consequences

I maxitive extensions: F (f ∨ g) = F (f ) ∨ F (g),

e.g., worst-case evaluations

I to simplify the results, we consider only extensions F that are:

I monotonic: f ≤ g ⇒ F (f ) ≤ F (g)

I calibrated: α ∈ R ⇒ F (α IΩ) = α

I null preserving: µ{f ̸= 0} = 0 ⇒ F (f ) = 0
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additive extensions

I when µ is additive, its unique additive extension to B is the integral with
respect to µ (Bhaskara Rao and Bhaskara Rao, 1983)

, which is also:

I scale invariant: β ∈ R>0 ⇒ F (β f ) = β F (f )

,

i.e., the unit in which the loss or utility of possible decisions
are measured is of no concern in the decision making

I location invariant: α ∈ R ⇒ F (f + α) = F (f ) + α

,

i.e., the loss or utility of possible decisions can be measured
on an interval scale (Stevens, 1946), since the location of
the zero point is of no concern in the decision making

I convex: λ ∈ (0, 1) ⇒ F (λ f + (1− λ) g) ≤ λF (f ) + (1− λ)F (g),

i.e., diversification does not increase the risk
(Artzner et al., 1999; Föllmer and Schied, 2011)

I when Ω is finite and µ is additive, the integral with respect to µ is a
weighted average: ∫

f dµ =
∑
ω∈Ω

f (ω)µ{ω}
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maxitive extensions
I when µ is maxitive, its maxitive extension to B is not unique

, but no
maxitive extension is also:

I scale invariant

I location invariant

I convex

I when µ is maxitive, its unique location invariant, maxitive extension to B is
the following integral with respect to µ, which is also convex and is therefore
called convex integral (Cattaneo, 2014, 2016):∫ X

f dµ =
∨

x∈R :µ{f>x}>0

(x + µ{f > x} − 1)

I when Ω is finite and µ is maxitive, the convex integral with respect to µ is a
penalized maximum:∫ X

f dµ =
∨

ω∈Ω :µ{ω}>0

(f (ω) + µ{ω} − 1)
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