Support Vector Regression with interval data

Marco Cattaneo¹ Andrea Wiencierz²

¹Department of Mathematics, University of Hull

²Department of Mathematics, University of York

4 November 2015

▶ precise data: $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y} \overset{\text{compact}}{\subset} \mathbb{R}^d \times \mathbb{R}$

- ▶ precise data: $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y} \overset{\text{compact}}{\subset} \mathbb{R}^d \times \mathbb{R}$
- reproducing kernel Hilbert space: set *F* of functions *f* : *X* → *Y*, e.g., with Gaussian kernel, *F* is dense in the space *C*(*X*) of continuous functions

- ▶ precise data: $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y} \overset{\text{compact}}{\subset} \mathbb{R}^d \times \mathbb{R}$
- reproducing kernel Hilbert space: set *F* of functions *f* : *X* → *Y*, e.g., with Gaussian kernel, *F* is dense in the space *C*(*X*) of continuous functions
- regression function: $f \in \mathcal{F}$ minimizing

$$\mathcal{E}(f) = rac{1}{n} \sum_{i=1}^{n} \psi\left(|y_i - f(x_i)|\right),$$

where $\psi: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is convex with $\psi(0) = 0$, e.g., linear loss $\psi: r \mapsto r$

- ▶ precise data: $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y} \overset{\text{compact}}{\subset} \mathbb{R}^d \times \mathbb{R}$
- reproducing kernel Hilbert space: set *F* of functions *f* : *X* → *Y*, e.g., with Gaussian kernel, *F* is dense in the space *C*(*X*) of continuous functions
- ▶ regression function: $f \in \mathcal{F}$ minimizing the regularized risk

$$\mathcal{E}(f) = \frac{1}{n} \sum_{i=1}^{n} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2,$$

where $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is convex with $\psi(0) = 0$, e.g., linear loss $\psi : r \mapsto r$, and $\lambda \in \mathbb{R}_{>0}$

▶ the regression function minimizing $\mathcal{E}(f)$ exists, is unique, and has the form

$$f=\sum_{j=1}^n \alpha_j \,\kappa(\,\cdot\,,x_j),$$

▶ the regression function minimizing $\mathcal{E}(f)$ exists, is unique, and has the form

$$f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j),$$

where $\alpha_i \in \mathbb{R}$, and κ is the kernel of \mathcal{F}

the minimization of *E*(*f*) becomes a convex optimization task in *n* variables *α*₁,..., *α_n*: i.e., the RT makes the theoretical idea practically feasible

▶ the regression function minimizing $\mathcal{E}(f)$ exists, is unique, and has the form

$$f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j),$$

- the minimization of *E*(*f*) becomes a convex optimization task in *n* variables *α*₁,..., *α_n*: i.e., the RT makes the theoretical idea practically feasible
- ► core of the proof: the structure of \mathcal{F} implies that for each f, the orthogonal projection $f' = \sum_{j=1}^{n} \alpha'_j \kappa(\cdot, x_j)$ of f on the subspace spanned by the functions $\kappa(\cdot, x_j)$ satisfies $f'(x_i) = f(x_i)$, and therefore $\mathcal{E}(f') \leq \mathcal{E}(f)$

▶ the regression function minimizing $\mathcal{E}(f)$ exists, is unique, and has the form

$$f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j),$$

- ► the minimization of *E*(*f*) becomes a convex optimization task in *n* variables *α*₁,..., *α_n*: i.e., the RT makes the theoretical idea practically feasible
- ► core of the proof: the structure of \mathcal{F} implies that for each f, the orthogonal projection $f' = \sum_{j=1}^{n} \alpha'_j \kappa(\cdot, x_j)$ of f on the subspace spanned by the functions $\kappa(\cdot, x_j)$ satisfies $f'(x_i) = f(x_i)$, and therefore $\mathcal{E}(f') \leq \mathcal{E}(f)$

▶ the regression function minimizing $\mathcal{E}(f)$ exists, is unique, and has the form

$$f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j),$$

- the minimization of *E*(*f*) becomes a convex optimization task in *n* variables *α*₁,..., *α_n*: i.e., the RT makes the theoretical idea practically feasible
- ► core of the proof: the structure of \mathcal{F} implies that for each f, the orthogonal projection $f' = \sum_{j=1}^{n} \alpha'_j \kappa(\cdot, x_j)$ of f on the subspace spanned by the functions $\kappa(\cdot, x_j)$ satisfies $f'(x_i) = f(x_i)$, and therefore $\mathcal{E}(f') \leq \mathcal{E}(f)$

interval data

▶ instead of the values y_i , only the intervals $[\underline{y}_i, \overline{y}_i]$ are observed, with $y_i \in [\underline{y}_i, \overline{y}_i]$

interval data

▶ instead of the values y_i , only the intervals $[\underline{y}_i, \overline{y}_i]$ are observed, with $y_i \in [\underline{y}_i, \overline{y}_i]$

• minimin and minimax SVR: $f \in \mathcal{F}$ minimizing respectively

$$\underline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \min_{y_i \in [\underline{y}_i, \overline{y}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$
$$\overline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{y_i \in [\underline{y}_i, \overline{y}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$

interval data

▶ instead of the values y_i , only the intervals $[\underline{y}_i, \overline{y}_i]$ are observed, with $y_i \in [\underline{y}_i, \overline{y}_i]$

• minimin and minimax SVR: $f \in \mathcal{F}$ minimizing respectively

$$\underline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \min_{y_i \in [\underline{y}_i, \overline{y}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$
$$\overline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{y_i \in [\underline{y}_i, \overline{y}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$

▶ RT: the regression functions minimizing $\underline{\mathcal{E}}(f)$ and $\overline{\mathcal{E}}(f)$ exist, are unique, and have the form $f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j)$, so that the minimizations of $\underline{\mathcal{E}}(f)$ and $\overline{\mathcal{E}}(f)$ become convex optimization tasks in *n* variables $\alpha_1, \ldots, \alpha_n$

▶ the RT can be directly generalized to the case with interval data $[y_i, \overline{y}_i] \subset \mathbb{R}$

- ▶ the RT can be directly generalized to the case with interval data $[y_i, \overline{y}_i] \subset \mathbb{R}$
- ► unfortunately, the RT cannot be directly generalized to the case with interval data [x_i, x_i] ⊂ ℝ^d, in which

$$\underline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \min_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$
$$\overline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$

are minimized:

- ▶ the RT can be directly generalized to the case with interval data $[y_i, \overline{y}_i] \subset \mathbb{R}$
- ► unfortunately, the RT cannot be directly generalized to the case with interval data [x_i, x_i] ⊂ ℝ^d, in which

$$\underline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \min_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$
$$\overline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$

are minimized:

• a regression function minimizing $\underline{\mathcal{E}}(f)$ would have the form $f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j)$, where $\alpha_j \in \mathbb{R}$ and $x_j \in [\underline{x}_j, \overline{x}_j]$, but in general $\underline{\mathcal{E}}$ is not convex

- ▶ the RT can be directly generalized to the case with interval data $[y_i, \overline{y}_i] \subset \mathbb{R}$
- ► unfortunately, the RT cannot be directly generalized to the case with interval data [x_i, x_i] ⊂ ℝ^d, in which

$$\underline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \min_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$
$$\overline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$

are minimized:

- ▶ a regression function minimizing $\underline{\mathcal{E}}(f)$ would have the form $f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j)$, where $\alpha_j \in \mathbb{R}$ and $x_j \in [\underline{x}_j, \overline{x}_j]$, but in general $\underline{\mathcal{E}}$ is not convex
- ▶ by contrast, $\overline{\mathcal{E}}$ is convex, but a regression function minimizing $\overline{\mathcal{E}}(f)$ does not necessarily have the form $f = \sum_{i=1}^{n} \alpha_j \kappa(\cdot, x_i)$, where $\alpha_j \in \mathbb{R}$ and $x_j \in [\underline{x}_j, \overline{x}_j]$

- ▶ the RT can be directly generalized to the case with interval data $[y_i, \overline{y}_i] \subset \mathbb{R}$
- ► unfortunately, the RT cannot be directly generalized to the case with interval data [x_i, x_i] ⊂ ℝ^d, in which

$$\underline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \min_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$
$$\overline{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{x_i \in [\underline{x}_i, \overline{x}_i]} \psi\left(|y_i - f(x_i)|\right) + \lambda \|f\|_{\mathcal{F}}^2$$

are minimized:

- ▶ a regression function minimizing $\underline{\mathcal{E}}(f)$ would have the form $f = \sum_{j=1}^{n} \alpha_j \kappa(\cdot, x_j)$, where $\alpha_j \in \mathbb{R}$ and $x_j \in [\underline{x}_j, \overline{x}_j]$, but in general $\underline{\mathcal{E}}$ is not convex
- by contrast, *E* is convex, but a regression function minimizing *E*(f) does not necessarily have the form f = ∑_{i=1}ⁿ α_j κ(·, x_j), where α_j ∈ ℝ and x_j ∈ [x_j, x_j]
- ► the more general case with interval data [x_i, x_i] × [y_i, y_i] ⊂ ℝ^d × ℝ also presents the above difficulties