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» reproducing kernel Hilbert space: set F of functions f : X — ), e.g., with
Gaussian kernel, F is dense in the space C(X') of continuous functions
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» precise data: (x1,¥1),..., (Xn, ¥n) €EX xY C RY xR

» reproducing kernel Hilbert space: set F of functions f : X — ), e.g., with
Gaussian kernel, F is dense in the space C(X') of continuous functions

> regression function: f € F minimizing

E(F) =% Xyl — F(a)l),

where ¢ : R>g — R>g is convex with ¢(0) = 0, e.g., linear loss ¢ : r +— r
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» precise data: (x1,¥1),..., (Xn, ¥n) €EX xY C RY xR

» reproducing kernel Hilbert space: set F of functions f : X — ), e.g., with
Gaussian kernel, F is dense in the space C(X') of continuous functions

> regression function: f € F minimizing the regularized risk

E(f) =5 v (lyi — FOa)) + AlF%
where ¢ : R>g — Rxg is convex with ¢(0) = 0, e.g., linear loss ¢ : r > r,
and A € Ryg
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representer theorem (RT)
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> the regression function minimizing £(f) exists, is unique, and has the form

f = Z_jn:l aJ K’( : 7><j)’
where a; € R, and & is the kernel of F

M. Cattaneo and A. Wiencierz SVR with interval data

3/5



representer theorem (RT)

00 01 0.2y0.3

0.2

-1.0 -0.5 0.0 0.5 M 1.0

> the regression function minimizing £(f) exists, is unique, and has the form
f = ZJ”:]. aJ K’( : 7><j)’
where a; € R, and & is the kernel of F

> the minimization of £(f) becomes a convex optimization task in n variables
Qi,...,ap: i.e., the RT makes the theoretical idea practically feasible
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f = Zjn:l aJ K’( : 7><_j)’
where a; € R, and & is the kernel of F

> the minimization of £(f) becomes a convex optimization task in n variables

Qi,...,ap: i.e., the RT makes the theoretical idea practically feasible

» core of the proof: the structure of F implies that for each f, the orthogonal

projection ' = Z}’Il k(- x;) of f on the subspace spanned by the

functions x( -, x;j) satisfies f'(x;) = f(x;), and therefore £(f") < E(f)
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interval data

00 01 0.2y0.3
1

0.2

T T T T T
-1.0 -0.5 0.0 0.5 1.0

> instead of the values y;, only the intervals [y;,y;] are observed, with
yi € lyi,¥il
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> instead of the values y;, only the intervals [y;,y;] are observed, with
yi € lyi,vil
» minimin and minimax SVR: f € F minimizing respectively
E(f)y=13", mi”y,-e[gi,y,] U (lyi — Fa)l) + A FI1%
E(f) =3 Yiimaxyepy y1 ¥ (lvi — FOa)l) + A 115
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> instead of the values y;, only the intervals [y;,y;] are observed, with

yi € lyi,¥il

» minimin and minimax SVR: f € F minimizing respectively

&(f) = 5 X minyery 719 (lvi — F(a)l) + AIF]5
E(f) = 5 Xy maxyery 719 (vi = F(a)]) + AIF]1%

» RT: the regression functions minimizing £(f) and &(f) exist, are unique, and
have the form f = >"" | a; r( -, x;), so that the minimizations of £(f) and

&(f) becom
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conclusion

» the RT can be directly generalized to the case with interval data [y;,y;] C R
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» unfortunately, the RT cannot be directly generalized to the case with interval
data [x;,x;] C R9, in which

E(F) = § Sty minyepx ¥ (lyi = FOa)l) + AlIFI1%
E(F) = £ 2l maxser, x) ¥ (Iyi — FOxi)l) + A 1%

are minimized:
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» by contrast, £ is convex, but a regression function minimizing £(f) does not
necessarily have the form f =377, a; k(- ,x), where a; € R and x; € [x;,X]]
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are minimized:

> a regression function minimizing £(f) would have the form
f=>10k(-,x), where aj € R and x; € [x;,X;], but in general £ is not
convex

» by contrast, £ is convex, but a regression function minimizing £(f) does not
necessarily have the form f =377, a; k(- ,x), where a; € R and x; € [x;,X]]

> the more general case with interval data [x;, X;] x [y;,¥i] C R? x R also
presents the above difficulties
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