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support vector regression (SVR)
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I precise data: (x1, y1), . . . , (xn, yn) ∈ X × Y
compact

⊂ Rd ×R

I reproducing kernel Hilbert space: set F of functions f : X → Y, e.g., with
Gaussian kernel, F is dense in the space C(X ) of continuous functions

I regression function: f ∈ F minimizing

E(f ) = 1
n

∑n
i=1 ψ (|yi − f (xi )|)

,+ λ ∥f ∥2F ,

where ψ : R≥0 → R≥0 is convex with ψ(0) = 0, e.g., linear loss ψ : r 7→ r

,
and λ ∈ R>0
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λ = 0.01
λ = 10−8

I precise data: (x1, y1), . . . , (xn, yn) ∈ X × Y
compact

⊂ Rd ×R

I reproducing kernel Hilbert space: set F of functions f : X → Y, e.g., with
Gaussian kernel, F is dense in the space C(X ) of continuous functions

I regression function: f ∈ F minimizing the regularized risk

E(f ) = 1
n

∑n
i=1 ψ (|yi − f (xi )|)

,

+ λ ∥f ∥2F ,
where ψ : R≥0 → R≥0 is convex with ψ(0) = 0, e.g., linear loss ψ : r 7→ r ,
and λ ∈ R>0
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representer theorem (RT)
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I the regression function minimizing E(f ) exists, is unique, and has the form

f =
∑n

j=1 αj κ( · , xj),

where αj ∈ R, and κ is the kernel of F

I the minimization of E(f ) becomes a convex optimization task in n variables
α1, . . . , αn: i.e., the RT makes the theoretical idea practically feasible

I core of the proof: the structure of F implies that for each f , the orthogonal
projection f ′ =

∑n
j=1 α

′
j κ( · , xj) of f on the subspace spanned by the

functions κ( · , xj) satisfies f ′(xi ) = f (xi ), and therefore E(f ′) ≤ E(f )
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interval data
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I instead of the values yi , only the intervals [y i , y i ] are observed, with
yi ∈ [y i , y i ]

I minimin and minimax SVR: f ∈ F minimizing respectively

E(f ) = 1
n

∑n
i=1 minyi∈[y

i
,y i ]

ψ (|yi − f (xi )|) + λ ∥f ∥2F
E(f ) = 1

n

∑n
i=1 maxyi∈[y

i
,y i ]

ψ (|yi − f (xi )|) + λ ∥f ∥2F
I RT: the regression functions minimizing E(f ) and E(f ) exist, are unique, and

have the form f =
∑n

j=1 αj κ( · , xj), so that the minimizations of E(f ) and
E(f ) become convex optimization tasks in n variables α1, . . . , αn
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conclusion

I the RT can be directly generalized to the case with interval data [y i , y i ] ⊂ R

I unfortunately, the RT cannot be directly generalized to the case with interval
data [x i , x i ] ⊂ Rd , in which

E(f ) = 1
n

∑n
i=1 minxi∈[x i ,x i ] ψ (|yi − f (xi )|) + λ ∥f ∥2F

E(f ) = 1
n

∑n
i=1 maxxi∈[x i ,x i ] ψ (|yi − f (xi )|) + λ ∥f ∥2F

are minimized:

I a regression function minimizing E(f ) would have the form
f =

∑n
j=1 αj κ( · , xj), where αj ∈ R and xj ∈ [x j , x j ], but in general E is not

convex

I by contrast, E is convex, but a regression function minimizing E(f ) does not
necessarily have the form f =

∑n
j=1 αj κ( · , xj), where αj ∈ R and xj ∈ [x j , x j ]

I the more general case with interval data [x i , x i ]× [y i , y i ] ⊂ Rd × R also
presents the above difficulties
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