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statistical literacy

I probability and statistics as high level numeracy skills

I expected of citizens in modern societies to understand news, product
information, political debate, etc.

I increases employability:

“I keep saying the sexy job in the next ten years will be
statisticians. People think I’m joking, but who would’ve guessed
that computer engineers would’ve been the sexy job of the
1990s? The ability to take data—to be able to understand it, to
process it, to extract value from it, to visualize it, to
communicate it—that’s going to be a hugely important skill in
the next decades, not only at the professional level but even at
the educational level for elementary school kids, for high school
kids, for college kids. Because now we really do have essentially
free and ubiquitous data. So the complimentary scarce factor is
the ability to understand that data and extract value from it.”

Hal Varian (professor at UC Berkeley, chief economist at Google),

McKinsey, January 2009
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mathematical definition

probability is a normalized measure

Andrey Kolmogorov (Tambov 1903 – Moscow 1987):
Grundbegriffe der Wahrscheinlichkeitsrechnung (1933)

ERGEBNISSE DER MATHEMATIK 
UND IHRER GRENZGEBIETE 

HERAUSGEGEBEN VON DER SCHRIFTLEITUNG 
DES 

"ZENTRALBLATT FQR MATHEMATIK" 
ZWEITER BAND 

--------------3--------------

GRUNDBEGRIFFE DER 
WAHRSCHEINLICHKEITScr 

RECHNUNG 
VON 

A. KOLMOGOROFF 

BERLIN 
VERLAG VON JULIUS SPRINGER 

1933 
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2 I, Elementary Theory of Probability 

the system of axioms and in the further development of the 
theory, then the postulational concepts of a random event and 
its probability seem the most suitable. There are other postula- 
tional systems of the theory of probability, particularly those in 
which the concept of probability is not treated as one of the basic 
concepts, but is itself expressed by means of other concept8.l 
However, in that caae, the aim is different, namely, to tie up as 
closely as possible the mathematical theory with the empirical 
development of the theory of probability. 

8 1. Axioms 

Let S be a collection of elements E,  q, g, . . . , which we shall call 
elementary events, and 8 a set of subsets of E ;  the elements of 
the set 8 will be called random events. 

I. 5 is a fielda of sets. 
11. id: contains the set E. 
111. To each set A in 8 is assigne& a non-negative red number 

P ( A ) .  This number P ( A )  is called the probability of the event A. 
IV. P(E) equals 1. 
V. I f  A and B h v e  m elemeat in common, them 

A system of seh, 8, together with a definite assignment of 
numbera P(A), satisfying Axioms I-V, is called a field of prab- 
ability. 

Our system of Axioms I-V is consistent. This is proved by the 
following example. Let E consist of the single element e and let 8 
consist of E and the null set 0. P(E) is then set equal to 1 and 
P(0) equals 0. 

' For example, R. von Misesf 1 ] and [2) and S. Bernatein [I]. 
a The readex who wishes from the outset to give a concrete meaning to the 

following axioms, is referred to 8 2. 
' Cf. HAUSDORFF, Mengedehre, 1927, p. 78. A system of sets is called a field 

if the sum, product, and difference of two seta of the system alao belong to the 
same system. Every non-empty field contains the null set 0. Using Hausdorff's 
notation, we designate the roduct of A and B b AB;,the sum b A 4- B in B 1; & the case where A B  = 0; an in the general case y A + B; the di erence of 
A and 3 by A-B. The set E-A, which is the complement of A,  will be denoted 
by A. We ahall assume that the reader is familiar with the fundamental rules 
of operations of Bets and their sums, products, and differences. All subsets 
of fJ will be designated by Latin capitals. 
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Chapter I 

ELEMENTARY THEORY OF PROBABILITY 

We define as  elementary theory of probability that part of 
the theory in which we have to deal with probabilities of only a 
finite number of events. The theorems which we derive here can 
be applied also to the problems connected with an infinite number 
of random events. However, when the latter are studied, emen- 
tially new principles are used. Therefore the only axiom of the 
mathematical theory of probability which deals particularly with 
the case of an infinite number of random events is not introduced 
until the beginning of Chapter I1 (Axiom VI). 

The theory of probability, as a mathematical discipline, can 
and should be developed from axioms in exactly the same way 
as Geometry and Algebra. This means that after we have defined 
the elements to be studied and their basic relations, and have 
stated the axiome by which theae relations are to be governed, 
all further exposition must be based exclusively on these axioms, 
independent of the usual concrete meaning of these elements and 
their relations. 

In accordance with the above, in 8 1 the concept of a field of 
probabilities is defined aa a system of aets which satisfies certain 
conditions. What the elements of this aet represent is of no im- 
portance in the purely mathematical development of the theory 
of probability (cf. the introduction of basic geometric concepts 
in the Foundatiow of Geometry by Hilbert, or the definitions of 
groups,  ring^ and fielda in abstract algebra). 

Every axiomatic (abstract) theory admits, as is well known, 
of an unlimited number of concrete interpretations besides those 
from which it was derived. Thus we find applications in fields of 
science which have no relation to the concepts of random event 
and of probability in the precise meaning of theae words. 

The poatulational basis of the theory of probability can be 
established by different methods in respect to the selection of 
axioms as well as in the selection of basic concepts and relations. 
However, if our aim is to achieve the utmost simplicity both in 
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example: probability of rain

Hull weather forecast: 30% probability of rain for tomorrow

(at least 0.1 mm at the weather station)

I It will rain tomorrow in 30% of the Hull region.

× 16%

I It will rain tomorrow for 30% of the time.

× 10%

I 30% of weather forecasters believe it will rain tomorrow.

× 22%

I It will rain on 30% of the days like tomorrow.

(X) 19%

I It will rain on 30% of the days for which
the weather forecast says 30% probability of rain.

(X)

Rebecca E. Morss, Julie L. Demuth, and Jeffrey K. Lazo:

Communicating uncertainty in weather forecasts: A survey of the

U.S. public, Weather and Forecasting 23 (2008)
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games of chance

probability of an event =
number of favorable outcomes

number of possible outcomes

I Girolamo Cardano (Pavia 1501 – Rome 1576):
Liber de ludo aleae (1663, written around 1564)

I Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662) and

Pierre de Fermat (Beaumont-de-Lomagne 1601/1607 – Castres 1665):
correspondence on the problem of division of the stakes (1654)

I Christiaan Huygens (The Hague 1629 – The Hague 1695):
De ratiociniis in ludo aleae (1657)

Marco Cattaneo @ University of Hull What is probability? 5/7



games of chance

probability of an event =
number of favorable outcomes

number of possible outcomes

I Girolamo Cardano (Pavia 1501 – Rome 1576):
Liber de ludo aleae (1663, written around 1564)

I Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662) and

Pierre de Fermat (Beaumont-de-Lomagne 1601/1607 – Castres 1665):
correspondence on the problem of division of the stakes (1654)

I Christiaan Huygens (The Hague 1629 – The Hague 1695):
De ratiociniis in ludo aleae (1657)

Marco Cattaneo @ University of Hull What is probability? 5/7



games of chance

probability of an event =
number of favorable outcomes

number of possible outcomes

I Girolamo Cardano (Pavia 1501 – Rome 1576):
Liber de ludo aleae (1663, written around 1564)

I Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662) and

Pierre de Fermat (Beaumont-de-Lomagne 1601/1607 – Castres 1665):
correspondence on the problem of division of the stakes (1654)

I Christiaan Huygens (The Hague 1629 – The Hague 1695):
De ratiociniis in ludo aleae (1657)

Marco Cattaneo @ University of Hull What is probability? 5/7



games of chance

probability of an event =
number of favorable outcomes

number of possible outcomes

I Girolamo Cardano (Pavia 1501 – Rome 1576):
Liber de ludo aleae (1663, written around 1564)

I Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662) and

Pierre de Fermat (Beaumont-de-Lomagne 1601/1607 – Castres 1665):
correspondence on the problem of division of the stakes (1654)

I Christiaan Huygens (The Hague 1629 – The Hague 1695):
De ratiociniis in ludo aleae (1657)

Marco Cattaneo @ University of Hull What is probability? 5/7



games of chance

probability of an event =
number of favorable outcomes

number of possible outcomes

I Girolamo Cardano (Pavia 1501 – Rome 1576):
Liber de ludo aleae (1663, written around 1564)

I Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662) and
Pierre de Fermat (Beaumont-de-Lomagne 1601/1607 – Castres 1665):
correspondence on the problem of division of the stakes (1654)

I Christiaan Huygens (The Hague 1629 – The Hague 1695):
De ratiociniis in ludo aleae (1657)

Marco Cattaneo @ University of Hull What is probability? 5/7



games of chance

probability of an event =
number of favorable outcomes

number of possible outcomes

I Girolamo Cardano (Pavia 1501 – Rome 1576):
Liber de ludo aleae (1663, written around 1564)

I Blaise Pascal (Clermont-Ferrand 1623 – Paris 1662) and
Pierre de Fermat (Beaumont-de-Lomagne 1601/1607 – Castres 1665):
correspondence on the problem of division of the stakes (1654)

I Christiaan Huygens (The Hague 1629 – The Hague 1695):
De ratiociniis in ludo aleae (1657)

Marco Cattaneo @ University of Hull What is probability? 5/7



PS¥CHOMETRIKA--VOL. 3{}, NO. 1 
MARCH, 1971 

BIAS AND RUNS IN DICE THROWING AND RECORDING: 
A FEW MILLION THROWS* 

GUDMUND R. IVERSEN, WILLARD H. LONGCORt, FREDERICK MOSTELLER, 
JOHN P. GILBERT, AND CLEO YOUTZ 

An experimenter threw individually 219 different dice of four different 
brands and recorded even and odd outcomes for one block of 20,000 trials 
for each die---4,380,000 throws in all. The resulting data on runs offer a basis 
for comparing the observed properties of such a physical randomizing 
process with theory and with simulations based on pseudo-random numbers 
and RAND Corporation random numbers. Although generally the results 
are close to those forecast by theory, some notable exceptions raise questions 
about the surprise value that should be associated with occurrences two 
standard deviations from the mean. These data suggest that  the usual 
significance level may well actually be running from 7 to 15 percent instead 
of the theoretical 5 percent. 

The data base is the largest of its kind. A set generated by one brand of 
dice contains 2,000,000 bits and is the first handmade empirical data of such 
size to fail to show a significant departure from ideal theory in either location 
or scale. 

1. Introduction 

How well do the laws of chance actually work? When a die is repeatedly 
thrown and its outcomes recorded, do imperfections in the die, in the throwing, 
in the perception of the outcome, and in recording appear? What sorts of 
deviations from chance do we find? 

Weldon's dice data [Fry, 1965] and Kerrieh's coin tossing monograph 
[Kerrieh, 1946] both give us some experience with large bodies of data pro- 
duced by humanly run physical randomizing devices whose idealized prob- 
abilities and properties are known to a good approximation. In a sense, such 
experiments are controls on other experiments where probability plays an 
important role. For example, such dice and coin experiments give us an 
idea of how seriously we should take small departures from mathematically 
predicted results in investigations where we search for small departures 
from a standard. They do this by showing the sizes and kinds of departures 
observed in an experiment with no planned human or material effects. They 
are placebo experiments. If one does not believe in extra-sensory perception, 
then many ESP investigations also would be iudged to qualify, but if one 

* The analysis was facilitated by a National Science Foundation grant GS-341 and 
and its continuation GS-2044X. It forms part of a larger study of data analysis. 

t Mr. Longcor is from Waukegan, Illinois; the other authors are from Harvard 
University. Dr. Iversen has moved to the University of Michigan. 
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law of large numbers

probability of an event = long-run relative frequency of its occurrence

Jacob Bernoulli (Basel 1655 – Basel 1705):
Ars conjectandi (1713)

JACOB1 BERNOULLI, 
P S ~ E ~ K  Baa. & utriufque Societ. Reg. Scientiar. 

Gall, & PruK Sodal. 
~ ~ A T H E M . $ T I C I  C E E E B E R R I M I ,  

ARS CONJECTANDI, 
OPUS POSTHUMUM* 

T R A C T A ? ' U , S  

DE SERIEBUS INFINITIS, 

B A S I L E R ,  
Impenfs T H U R N I S I O K U M ,  Fratnun. 

cI3 b c c  X I  11. 
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conclusion

“Il est remarquable qu’une science qui a commencé par la
considération des jeux, se soit élevée aux plus importans objets
des connaissances humaines.”

Pierre-Simon de Laplace:

Essai philosophique sur les probabilités (1814)

[“It is remarkable that a science which began with the
consideration of games of chance should have raised itself to
the most important objects of human knowledge.”]
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