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likelihood approach

I statistical model: (Ω,A,Pθ) with θ ∈ Θ

I (normalized) likelihood function given the data A ∈ A:

λ : Θ → [0, 1] with λ(θ) ∝ Pθ(A) and supθ∈Θ λ(θ) = 1

I λ is central in all approaches to statistics:

I Bayesian: uncertain knowledge about θ described by posterior probability
measure, obtained by combining λ with a prior probability measure, which
cannot describe (complete) ignorance

I classical: prior ignorance assumed, but no general description of uncertain
knowledge: only single statistical methods, mostly based on λ and
Λ(B) = supθ∈B λ(θ) with B ⊆ Θ

I likelihood: uncertain knowledge about θ described by λ, without need of
prior information (“prior-free Bayesian” approach)
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nonadditive measures

I the set function Λ is a nonadditive measure (imprecise probability measure)

I more precisely, Λ is a maxitive measure (possibility measure):

Λ(B ∪ C ) = Λ(B) ∨ Λ(C ) for all (disjoint) B,C ⊆ Θ

I integrals with respect to (non)additive measures [Cattaneo, 2013b]:

I Bayesian approach: decisions and inferences obtained by minimizing the
integral of the loss (or error) with respect to the posterior probability measure

I likelihood approach: decisions and inferences obtained by minimizing the
integral of the loss (or error) with respect to the possibility measure Λ
[Cattaneo, 2013a]

I the likelihood function gives an interpretation to possibility measures and
fuzzy sets [Cattaneo, 2008]
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likelihood-based imprecise regression

I a general framework for regression with imprecisely observed data
[Cattaneo and Wiencierz, 2012, 2014]

I instead of precisely observing the value of a variable, often only a set
containing this value is observed (missing data, censored data, and precisely
observed data are special cases)

I the likelihood approach can cope with the uncertainty about the imprecisely
observed values

I example: relationship between the
(subjective) sensory quality Y and
the alcohol content X (in percent by
volume) of n = 1599 Vinho Verde
red wines from Portugal
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probabilistic graphical models

I graphical models describe the (conditional) independences between the
involved variables

I these independences and the corresponding (conditional) probabilities must
be learned from data

I the likelihood approach can describe the uncertainty about the probability
estimates [Cattaneo, 2010]

I example: classifier in which a class is
returned only when the probabilities can
be estimated with sufficient certainty
[Antonucci, Cattaneo, and Corani, 2012]
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present and future research

I likelihood approach and nonadditive measures:

I representation theorems for likelihood-based preferences

I connection with risk measures and fuzzy sets

I likelihood-based imprecise regression:

I effects of stronger assumptions

I support vector machines with imprecisely observed data

I probabilistic graphical models:

I simultaneous learning of independences and probabilities

I application to expert systems
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