The likelihood approach to statistics as a theory of imprecise probability

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

September 25, 2009

• set \mathcal{P} of probability measures on (Ω, \mathcal{A})

- set \mathcal{P} of probability measures on (Ω, \mathcal{A})
- ▶ each $P \in P$ is interpreted as a probabilistic model of the reality under consideration

- set \mathcal{P} of probability measures on (Ω, \mathcal{A})
- ▶ each $P \in P$ is interpreted as a probabilistic model of the reality under consideration
- ► after having observed the event A ∈ A, the likelihood function lik(P) ∝ P(A) on P describes the relative ability of the models to forecast the observed data

- set \mathcal{P} of probability measures on (Ω, \mathcal{A})
- ▶ each $P \in P$ is interpreted as a probabilistic model of the reality under consideration
- ► after having observed the event A ∈ A, the likelihood function lik(P) ∝ P(A) on P describes the relative ability of the models to forecast the observed data
- ▶ log ^{lik(P₁)}/_{lik(P₂)} is the information for discrimination (or weight of evidence) in favor of P₁ against P₂

- set \mathcal{P} of probability measures on (Ω, \mathcal{A})
- ▶ each $P \in P$ is interpreted as a probabilistic model of the reality under consideration
- ► after having observed the event A ∈ A, the likelihood function lik(P) ∝ P(A) on P describes the relative ability of the models to forecast the observed data
- ▶ log ^{lik(P₁)}/_{lik(P₂)} is the information for discrimination (or weight of evidence) in favor of P₁ against P₂
- ▶ in particular, a constant *lik* describes the case of **no information** for discrimination among the probabilistic models in *P*

the set P of probability measures and the likelihood function lik on P can be interpreted as the two levels of a hierarchical model of the reality under consideration

- the set P of probability measures and the likelihood function *lik* on P can be interpreted as the two levels of a hierarchical model of the reality under consideration
- ▶ when an event A ∈ A is observed, the hierarchical model can be updated as follows:

$$\mathcal{P} \quad \rightsquigarrow \quad \mathcal{P}' = \{ P(\cdot \mid A) : P \in \mathcal{P}, \ P(A) > 0 \}$$

$$lik \quad \rightsquigarrow \quad lik'(P') \propto \sup_{P \in \mathcal{P} : P(\cdot \mid A) = P'} lik(P) P(A) \quad \text{on } \mathcal{P}'$$

- the set P of probability measures and the likelihood function *lik* on P can be interpreted as the two levels of a hierarchical model of the reality under consideration
- ▶ when an event A ∈ A is observed, the hierarchical model can be updated as follows:

$$\mathcal{P} \quad \rightsquigarrow \quad \mathcal{P}' = \{ P(\cdot \mid A) : P \in \mathcal{P}, \ P(A) > 0 \}$$

$$lik \quad \rightsquigarrow \quad lik'(P') \propto \sup_{P \in \mathcal{P} : P(\cdot \mid A) = P'} lik(P) P(A) \quad \text{on } \mathcal{P}'$$

 the prior likelihood function *lik* can describe the information from past observations, or subjective beliefs (interpreted as the information from *virtual* past observations)

- the set P of probability measures and the likelihood function *lik* on P can be interpreted as the two levels of a hierarchical model of the reality under consideration
- ▶ when an event A ∈ A is observed, the hierarchical model can be updated as follows:

$$\mathcal{P} \quad \rightsquigarrow \quad \mathcal{P}' = \{ P(\cdot \mid A) : P \in \mathcal{P}, \ P(A) > 0 \}$$

$$lik \quad \rightsquigarrow \quad lik'(P') \propto \sup_{P \in \mathcal{P} : P(\cdot \mid A) = P'} lik(P) P(A) \quad \text{on } \mathcal{P}'$$

- the prior likelihood function *lik* can describe the information from past observations, or subjective beliefs (interpreted as the information from *virtual* past observations)
- the penalty term in penalized likelihood methods can often be interpreted as a prior *lik*

- the set P of probability measures and the likelihood function *lik* on P can be interpreted as the two levels of a hierarchical model of the reality under consideration
- ▶ when an event A ∈ A is observed, the hierarchical model can be updated as follows:

$$\mathcal{P} \quad \rightsquigarrow \quad \mathcal{P}' = \{ P(\cdot \mid A) : P \in \mathcal{P}, \ P(A) > 0 \}$$

$$lik \quad \rightsquigarrow \quad lik'(P') \propto \sup_{P \in \mathcal{P} : P(\cdot \mid A) = P'} lik(P) P(A) \quad \text{on } \mathcal{P}'$$

- the prior likelihood function *lik* can describe the information from past observations, or subjective beliefs (interpreted as the information from *virtual* past observations)
- the penalty term in penalized likelihood methods can often be interpreted as a prior *lik*
- the choice of a prior *lik* seems better supported by intuition than the choice of a prior probability measure: in particular, a constant *lik* describes the case of no information (complete ignorance)

imprecise probability

► the uncertain knowledge about the value g(P) of a function g : P → G is described by the profile likelihood function

$$\mathit{lik}_{g}(\gamma) \propto \sup_{P \in \mathcal{P} : g(P) = \gamma} \mathit{lik}(P) \hspace{0.2cm} ext{on} \hspace{0.2cm} \mathcal{G}$$

imprecise probability

► the uncertain knowledge about the value g(P) of a function g : P → G is described by the profile likelihood function

$$\mathit{lik}_{g}(\gamma) \propto \sup_{P \in \mathcal{P} : g(P) = \gamma} \mathit{lik}(P) \hspace{0.2cm} ext{on} \hspace{0.2cm} \mathcal{G}$$

example: profile likelihood function for the probability p of observing at least 3 successes in the next 5 experiments (Bernoulli trials), after having observed 38 successes in 50 experiments

imprecise probability

► the uncertain knowledge about the value g(P) of a function g : P → G is described by the profile likelihood function

$$\mathit{lik}_{g}(\gamma) \propto \sup_{P \in \mathcal{P} : g(P) = \gamma} \mathit{lik}(P) \hspace{0.2cm} ext{on} \hspace{0.2cm} \mathcal{G}$$

example: profile likelihood function for the probability p of observing at least 3 successes in the next 5 experiments (Bernoulli trials), after having observed 38 successes in 50 experiments

normalized likelihood functions are a possible interpretation of membership functions of fuzzy sets: in this sense, the hierarchical model is a fuzzy probability measure, and the above graph shows the membership function of a fuzzy probability value

a decision problem is described by a loss function L : P × D → [0,∞), where L(P, d) is the loss incurred by making the decision d, according to the probabilistic model P

- a decision problem is described by a loss function L : P × D → [0,∞), where L(P, d) is the loss incurred by making the decision d, according to the probabilistic model P
- example: profile likelihood functions for the losses L(P, d₁) and L(P, d₂) (i.e., membership functions for the fuzzy losses of d₁ and d₂)

- a decision problem is described by a loss function L : P × D → [0,∞), where L(P, d) is the loss incurred by making the decision d, according to the probabilistic model P
- example: profile likelihood functions for the losses L(P, d₁) and L(P, d₂) (i.e., membership functions for the fuzzy losses of d₁ and d₂)

maximum likelihood estimation leads to the MLD criterion:

minimize
$$L(\hat{P}_{ML}, d)$$

- a decision problem is described by a loss function L : P × D → [0,∞), where L(P, d) is the loss incurred by making the decision d, according to the probabilistic model P
- example: profile likelihood functions for the losses L(P, d₁) and L(P, d₂) (i.e., membership functions for the fuzzy losses of d₁ and d₂)

maximum likelihood estimation leads to the MLD criterion:

minimize
$$L(\hat{P}_{ML}, d)$$

► the only likelihood-based decision criterion satisfying some basic properties is the MPL criterion with α ∈ (0,∞):

minimize $\sup_{P \in \mathcal{P}} lik(P)^{\alpha} L(P, d)$

▶ example:
$$\mathcal{P} = \{P_0, P_1, \dots, P_n\}$$
 and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,

- ▶ example: $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,
 - ▶ likelihood function *lik* on \mathcal{P} with $lik(P_0) = c \ lik(P_i)$ for a c > 1and all $i \in \{1, ..., n\}$:

likelihood-based decision criterion \Rightarrow d₀ optimal

- ▶ example: $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,
 - ▶ likelihood function lik on P with lik(P₀) = c lik(P_i) for a c > 1 and all i ∈ {1,...,n}: likelihood-based decision criterion ⇒ d₀ optimal
 - Probability measure π on P with π{P₀} = c π{P_i} for a c > 1 and all i ∈ {1,...,n}: Bayesian decision criterion ⇒ d₁ optimal when n is large enough

(many bad probabilistic models make a good one)

- ▶ example: $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,
 - ▶ likelihood function lik on P with lik(P₀) = c lik(P_i) for a c > 1 and all i ∈ {1,..., n}: likelihood-based decision criterion ⇒ d₀ optimal
 - probability measure π on P with π{P₀} = c π{P_i} for a c > 1 and all i ∈ {1,..., n}: Bayesian decision criterion ⇒ d₁ optimal when n is large enough (many bad probabilistic models make a good one)
- in the Bayesian approach the probabilistic models are handled as possible "states of the world" (in particular, they are considered *mutually exclusive*)

- ▶ example: $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,
 - ▶ likelihood function lik on P with lik(P₀) = c lik(P_i) for a c > 1 and all i ∈ {1,..., n}: likelihood-based decision criterion ⇒ d₀ optimal
 - probability measure π on P with π{P₀} = c π{P_i} for a c > 1 and all i ∈ {1,..., n}: Bayesian decision criterion ⇒ d₁ optimal when n is large enough (many bad probabilistic models make a good one)
- in the Bayesian approach the probabilistic models are handled as possible "states of the world" (in particular, they are considered *mutually exclusive*)
- basic advantage of the hierarchical model over

- ▶ example: $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,
 - ▶ likelihood function lik on P with lik(P₀) = c lik(P_i) for a c > 1 and all i ∈ {1,..., n}: likelihood-based decision criterion ⇒ d₀ optimal
 - probability measure π on P with π{P₀} = c π{P_i} for a c > 1 and all i ∈ {1,..., n}: Bayesian decision criterion ⇒ d₁ optimal when n is large enough (many bad probabilistic models make a good one)
- in the Bayesian approach the probabilistic models are handled as possible "states of the world" (in particular, they are considered *mutually exclusive*)
- basic advantage of the hierarchical model over
 - the precise Bayesian model: the ability to describe the state of complete ignorance

- ▶ example: $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ and $\mathcal{D} = \{d_0, d_1\}$, with $L(P_0, d_0) = 0$ and $L(P_i, d_0) = 1$ for all $i \in \{1, \dots, n\}$, $L(P_0, d_1) = 1$ and $L(P_i, d_1) = 0$ for all $i \in \{1, \dots, n\}$,
 - ▶ likelihood function lik on P with lik(P₀) = c lik(P_i) for a c > 1 and all i ∈ {1,..., n}: likelihood-based decision criterion ⇒ d₀ optimal
 - probability measure π on P with π{P₀} = c π{P_i} for a c > 1 and all i ∈ {1,..., n}: Bayesian decision criterion ⇒ d₁ optimal when n is large enough (many bad probabilistic models make a good one)
- in the Bayesian approach the probabilistic models are handled as possible "states of the world" (in particular, they are considered *mutually exclusive*)
- basic advantage of the hierarchical model over

•	the precise Bayesian model:	the ability to describe the state of complete ignorance
•	the imprecise Bayesian model:	the ability to get out of the state of complete ignorance