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likelihood function

I set P of probability measures on (Ω,A)

I each P ∈ P is interpreted as a probabilistic model of the reality
under consideration

I after having observed the event A ∈ A, the likelihood function
lik(P) ∝ P(A) on P describes the relative ability of the models to
forecast the observed data

I log lik(P1)
lik(P2)

is the information for discrimination (or weight of

evidence) in favor of P1 against P2

I in particular, a constant lik describes the case of no information for
discrimination among the probabilistic models in P
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hierarchical model
I the set P of probability measures and the likelihood function lik on

P can be interpreted as the two levels of a hierarchical model of
the reality under consideration

I when an event A ∈ A is observed, the hierarchical model can be
updated as follows:

P  P ′ = {P(· |A) : P ∈ P, P(A) > 0}

lik  lik ′(P ′) ∝ sup
P∈P :P(· |A)=P′

lik(P)P(A) on P ′

I the prior likelihood function lik can describe the information from
past observations, or subjective beliefs (interpreted as the
information from virtual past observations)

I the penalty term in penalized likelihood methods can often be
interpreted as a prior lik

I the choice of a prior lik seems better supported by intuition than the
choice of a prior probability measure: in particular, a constant lik
describes the case of no information (complete ignorance)



hierarchical model
I the set P of probability measures and the likelihood function lik on

P can be interpreted as the two levels of a hierarchical model of
the reality under consideration

I when an event A ∈ A is observed, the hierarchical model can be
updated as follows:

P  P ′ = {P(· |A) : P ∈ P, P(A) > 0}

lik  lik ′(P ′) ∝ sup
P∈P :P(· |A)=P′

lik(P)P(A) on P ′

I the prior likelihood function lik can describe the information from
past observations, or subjective beliefs (interpreted as the
information from virtual past observations)

I the penalty term in penalized likelihood methods can often be
interpreted as a prior lik

I the choice of a prior lik seems better supported by intuition than the
choice of a prior probability measure: in particular, a constant lik
describes the case of no information (complete ignorance)



hierarchical model
I the set P of probability measures and the likelihood function lik on

P can be interpreted as the two levels of a hierarchical model of
the reality under consideration

I when an event A ∈ A is observed, the hierarchical model can be
updated as follows:

P  P ′ = {P(· |A) : P ∈ P, P(A) > 0}

lik  lik ′(P ′) ∝ sup
P∈P :P(· |A)=P′

lik(P)P(A) on P ′

I the prior likelihood function lik can describe the information from
past observations, or subjective beliefs (interpreted as the
information from virtual past observations)

I the penalty term in penalized likelihood methods can often be
interpreted as a prior lik

I the choice of a prior lik seems better supported by intuition than the
choice of a prior probability measure: in particular, a constant lik
describes the case of no information (complete ignorance)



hierarchical model
I the set P of probability measures and the likelihood function lik on

P can be interpreted as the two levels of a hierarchical model of
the reality under consideration

I when an event A ∈ A is observed, the hierarchical model can be
updated as follows:

P  P ′ = {P(· |A) : P ∈ P, P(A) > 0}

lik  lik ′(P ′) ∝ sup
P∈P :P(· |A)=P′

lik(P)P(A) on P ′

I the prior likelihood function lik can describe the information from
past observations, or subjective beliefs (interpreted as the
information from virtual past observations)

I the penalty term in penalized likelihood methods can often be
interpreted as a prior lik

I the choice of a prior lik seems better supported by intuition than the
choice of a prior probability measure: in particular, a constant lik
describes the case of no information (complete ignorance)



hierarchical model
I the set P of probability measures and the likelihood function lik on

P can be interpreted as the two levels of a hierarchical model of
the reality under consideration

I when an event A ∈ A is observed, the hierarchical model can be
updated as follows:

P  P ′ = {P(· |A) : P ∈ P, P(A) > 0}

lik  lik ′(P ′) ∝ sup
P∈P :P(· |A)=P′

lik(P)P(A) on P ′

I the prior likelihood function lik can describe the information from
past observations, or subjective beliefs (interpreted as the
information from virtual past observations)

I the penalty term in penalized likelihood methods can often be
interpreted as a prior lik

I the choice of a prior lik seems better supported by intuition than the
choice of a prior probability measure: in particular, a constant lik
describes the case of no information (complete ignorance)



imprecise probability

I the uncertain knowledge about the value g(P) of a function
g : P → G is described by the profile likelihood function

likg (γ) ∝ sup
P∈P : g(P)=γ

lik(P) on G

I example: profile likelihood function
for the probability p of observing at
least 3 successes in the next 5
experiments (Bernoulli trials), after
having observed 38 successes in 50
experiments 0

0.2

0.4
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lik
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p

I normalized likelihood functions are a possible interpretation of
membership functions of fuzzy sets: in this sense, the hierarchical
model is a fuzzy probability measure, and the above graph shows
the membership function of a fuzzy probability value
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likelihood-based decisions
I a decision problem is described by a loss function

L : P ×D → [0,∞), where L(P, d) is the loss incurred by making
the decision d , according to the probabilistic model P

I example: profile likelihood functions
for the losses L(P, d1) and L(P, d2)
(i.e., membership functions for the
fuzzy losses of d1 and d2) 0

0.2
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I maximum likelihood estimation leads to the MLD criterion:

minimize L(P̂ML, d)

I the only likelihood-based decision criterion satisfying some basic
properties is the MPL criterion with α ∈ (0,∞):

minimize sup
P∈P

lik(P)α L(P, d)
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comparison of hierarchical and Bayesian models
I example: P = {P0,P1, . . . ,Pn} and D = {d0, d1}, with

L(P0, d0) = 0 and L(Pi , d0) = 1 for all i ∈ {1, . . . , n},
L(P0, d1) = 1 and L(Pi , d1) = 0 for all i ∈ {1, . . . , n},

I likelihood function lik on P with lik(P0) = c lik(Pi ) for a c > 1
and all i ∈ {1, . . . , n}:
likelihood-based decision criterion ⇒ d0 optimal

I probability measure π on P with π{P0} = c π{Pi} for a c > 1
and all i ∈ {1, . . . , n}:
Bayesian decision criterion ⇒ d1 optimal when n is large enough
(many bad probabilistic models make a good one)

I in the Bayesian approach the probabilistic models are handled as
possible “states of the world” (in particular, they are considered
mutually exclusive)

I basic advantage of the hierarchical model over

I the precise Bayesian model: the ability to describe the state of
complete ignorance

I the imprecise Bayesian model: the ability to get out of the state of
complete ignorance
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