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kinds of uncertainty

probability distributions

X ∼ F , e.g.: X ∼ N (0, 1)

sets

x ∈ A, e.g.: x ∈ [−10, 10]

generalization [Shackle (1943,
1949), Zadeh (1965, 1978), . . . ]:

fuzzy sets / possibility distributions

x ∈ F , X ∼ µF

Bayesian approach to statistics:
only probability distributions
(X ∼ Fθ and θ ∼ π)

classical approach to statistics:
theory of interval probability:

}
probability distributions (X ∼ Fθ)
and sets (θ ∈ Θ)

theory of fuzzy probability:
probability distributions (X ∼ Fθ)
and fuzzy sets (θ ∈ F , θ ∼ µF )
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fuzzy sets vs (subjective) probability distributions

0–10 –5 5 10x

as membership function of a fuzzy set
(or density of a possibility distribution):

|X | < 1 is more likely than |X | > 1

as density of a probability distribution:

|X | > 1 is more likely than |X | < 1
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interpretation of degrees of membership

in order to combine the information from different fuzzy sets (or
possibility distributions), we need a precise interpretation of the degrees
of membership (they must have the same meaning in the different fuzzy
sets)

the rules of the theory of fuzzy sets (or possibility theory) depend on the
interpretation of the degrees of membership: we should apply only those
rules that are justified by the chosen interpretation

(by contrast, the rules of probability theory do not depend on the
interpretation of probability values as relative frequencies or as degrees of
belief)



interpretation of degrees of membership

in order to combine the information from different fuzzy sets (or
possibility distributions), we need a precise interpretation of the degrees
of membership (they must have the same meaning in the different fuzzy
sets)

the rules of the theory of fuzzy sets (or possibility theory) depend on the
interpretation of the degrees of membership: we should apply only those
rules that are justified by the chosen interpretation

(by contrast, the rules of probability theory do not depend on the
interpretation of probability values as relative frequencies or as degrees of
belief)



interpretation of degrees of membership

in order to combine the information from different fuzzy sets (or
possibility distributions), we need a precise interpretation of the degrees
of membership (they must have the same meaning in the different fuzzy
sets)

the rules of the theory of fuzzy sets (or possibility theory) depend on the
interpretation of the degrees of membership: we should apply only those
rules that are justified by the chosen interpretation

(by contrast, the rules of probability theory do not depend on the
interpretation of probability values as relative frequencies or as degrees of
belief)



likelihood interpretation

a common interpretation of the membership functions of fuzzy sets is as
likelihood functions [Loginov (1966), Hisdal (1988), Coletti and
Scozzafava (2004), . . . ]

the degree of membership µF (x) of x in the fuzzy set F is interpreted as
(proportional to) the probability that an object with associated value x is
considered as an element of F (e.g.: µtall(180) is the probability that a
180 cm person is considered as “tall”, and µtall(195) is the probability
that a 195 cm person is considered as “tall”)

besides probability distributions and sets, the only other descriptions of
uncertain knowledge that are widely used in statistics are likelihood
functions
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fuzzy data

with the likelihood interpretation of membership functions, the precise
observation of Y = f (X , ε) (where ε ∼ F is an observation error)
corresponds to a fuzzy observation of X (e.g.: X is the height of a
person, and Y is the classification of the person as “tall” or not)

the concept of dependence among fuzzy sets (or possibility
distributions) is clarified by the likelihood interpretation

fuzzy data (or fuzzified data) can lead to more robust statistical
inferences
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