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notation

> in statistics, L usually denotes:

> likelihood function (here \)

> loss function (here W)

> statistical model: (Q,F, Py) with 6 € © (where © is a nonempty set) and
random variables X : Q — X and X; : Q — X;
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loss function

> a statistical decision problem is described by a loss function
W:0 xD—|[0,+0],

where D is a nonempty set
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where D is a nonempty set
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loss function

» a statistical decision problem is described by a loss function
W:0 xD—|[0,+0],
where D is a nonempty set
> intended as unification (and generalization) of statistical inference,
in particular of:
> point estimation (with D = ©)
> hypothesis testing (with D = {Hp, H1})

» most successful general methods:

> point estimation: maximum likelihood estimators

> hypothesis testing: likelihood ratio tests

» these methods do not fit well in the setting of statistical decision theory:
here they are unified (and generalized) in likelihood decision theory
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likelihood function
> A : © — [0,1] is the (relative) likelihood function given X = x, when

sup A(0) =1 and A (0) x Po(X = x)
0co
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likelihood function

> A : © — [0,1] is the (relative) likelihood function given X = x, when

sup A(0) =1 and A (0) x Po(X = x)
0co

(with A.()  fy(x) as approximation for continuous X)

» )\, describes the relative plausibility of the possible values of 6 in the light of
the observation X = x, and can thus be used as a basis for post-data
decision making

» prior information can be described by a prior likelihood function: if X and
Xy are independent, then A(,, ,) X Ay Ax,; that is, when X; = x5 is
observed, the prior A, is updated to the posterior A(,; ,)

> strong similarity with the Bayesian approach (both satisfy the likelihood
principle): a fundamental advantage of the likelihood approach is the
possibility of not using prior information (since A,, = 1 describes complete
ignorance)
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> likelihood decision criterion: minimize V(W(:,d), \),
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> likelihood decision criterion: minimize V(W(:,d), \),
where the functional V must satisfy the following three properties, for all
functions w, w’ : © — [0, +oo[ and all likelihood functions A\, A\, : © — [0, 1]

» monotonicity: w < w’ (pointwise) = V(w,\) < V(w',))
(implied by meaning of W)

» parametrization invariance: b: © — @ bijection = V(wob,Aob) = V(w, )

(excludes Bayesian criteria V(w, \) = ffw)\*di“ for infinite ©)

> consistency: H C © with lim,— o0 SUpycg\g An(0) =0 =
limp—oo V(¢ hy + ¢’ lovz, An) = ¢ for all constants ¢, ¢’ € [0, +oof
(excludes minimax criterion V(w, A) = supgcq w(9),
implies calibration: V(c,\) = ¢)

> likelihood decision function: 6 : X — D such that §(x) minimizes
V( W(" d)’ )‘X)
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properties

» likelihood decision criteria have the advantages of post-data methods:

> independence from choice of possible alternative observations
> direct interpretation

» simpler problems

» likelihood decision criteria have also important pre-data properties:

» equivariance: for invariant decision problems, the likelihood decision functions
are equivariant

» asymptotic optimality: under some regularity conditions, the likelihood
decision functions 6, : X1 X --- x X, = D satisfy

lim W(0,0,(Xy,..., X)) = inf W(0,d) Py-as.

n—oo
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MPL criterion

> MPL criterion: minimize supycg W(6, d) Ac(6),
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MPL criterion

» MPL criterion: minimize supycg W(8, d) Ac(6), corresponds to
V(w, \) = sup w(8) A(6)
0co

(nonadditive integral of w with respect to H — supgeqy A(6))

» point estimation:
» D=0 finite
> W(0,0) = o simple loss function

» the maximum likelihood estimator (when well-defined) is the likelihood
decision function resulting from the MPL criterion

> hypothesis testing:
> 'D:{H07H1} with Hy:0 € H and H1:9€6\7-L

» W(0,Hi) = cloerr and W(9, Ho) = ¢’ lgpcorn with ¢ > ¢’

» the likelihood ratio test with critical value <’/c is the likelihood decision
function resulting from the MPL criterion
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a simple example
> X1,...,. X, NS N(6,0?) with © =]0, +oo[ (that is, § positive and o known)
> estimation of § with squared error:
» D=0 with W(0,0)=(0—0)?
» no unbiased estimator, maximum likelihood estimator not well-defined, no

standard (proper) Bayesian prior

» likelihood decision function resulting from the MPL criterion:

» scale invariance and sufficiency: 0(xi, ..., x,) = g( U;ﬁ) o/yn
» asymptotic optimality (consistency): O(xi,...,x,) =X when X > v29/ /5
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conclusion

» this work:

> fills a gap in the likelihood approach to statistics

> introduces an alternative to classical and Bayesian decision making

> offers a new perspective on the likelihood methods

> likelihood decision making:
> is post-data and equivariant
> is asymptotically optimal

» does not need prior information
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