Likelihood Decision Functions

Marco Cattaneo
Department of Statistics, LMU Munich

GPSD 2012, Mainz, Germany 9 March 2012

▶ in statistics, *L* usually denotes:

- ▶ in statistics, *L* usually denotes:
 - ▶ likelihood function

- ▶ in statistics, *L* usually denotes:
 - ▶ likelihood function
 - ▶ loss function

- ▶ in statistics, *L* usually denotes:
 - ▶ likelihood function (here λ)
 - ▶ loss function (here W)

- ▶ in statistics, *L* usually denotes:
 - ▶ likelihood function (here λ)
 - ▶ loss function (here *W*)
- ▶ statistical model: $(\Omega, \mathcal{F}, P_{\theta})$ with $\theta \in \Theta$ (where Θ is a nonempty set) and random variables $X : \Omega \to \mathcal{X}$ and $X_i : \Omega \to \mathcal{X}_i$

▶ a statistical decision problem is described by a loss function

$$W:\Theta imes \mathcal{D} o [0,+\infty[$$
 ,

where $\ensuremath{\mathcal{D}}$ is a nonempty set

a statistical decision problem is described by a loss function

$$W:\Theta imes \mathcal{D} o [0,+\infty[$$
 ,

where \mathcal{D} is a nonempty set

intended as unification (and generalization) of statistical inference,

a statistical decision problem is described by a loss function

$$W:\Theta \times \mathcal{D} \rightarrow [0,+\infty[$$
,

where \mathcal{D} is a nonempty set

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with $\mathcal{D} = \Theta$)
 - hypothesis testing (with $\mathcal{D} = \{H_0, H_1\}$)

a statistical decision problem is described by a loss function

$$W:\Theta \times \mathcal{D} \rightarrow [0,+\infty[$$
,

where \mathcal{D} is a nonempty set

- intended as unification (and generalization) of statistical inference, in particular of:
 - ▶ point estimation (with $\mathcal{D} = \Theta$)
 - hypothesis testing (with $\mathcal{D} = \{H_0, H_1\}$)
- most successful general methods:
 - point estimation: maximum likelihood estimators
 - hypothesis testing: likelihood ratio tests

a statistical decision problem is described by a loss function

$$W:\Theta\times\mathcal{D}\to[0,+\infty[$$
,

where \mathcal{D} is a nonempty set

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with $\mathcal{D} = \Theta$)
 - hypothesis testing (with $\mathcal{D} = \{H_0, H_1\}$)
- most successful general methods:
 - point estimation: maximum likelihood estimators
 - hypothesis testing: likelihood ratio tests
- ▶ these methods do not fit well in the setting of statistical decision theory: here they are unified (and generalized) in likelihood decision theory

 $\lambda_x:\Theta o [0,1]$ is the (relative) likelihood function given X=x, when $\sup_{\theta\in\Theta}\lambda_x(\theta)=1\quad\text{and}\quad\lambda_x(\theta)\propto P_{\theta}(X=x)$

 $\lambda_x:\Theta\to [0,1] \text{ is the (relative) likelihood function given } X=x\text{, when}$ $\sup_{\theta\in\Theta}\lambda_x(\theta)=1\quad\text{and}\quad \lambda_x(\theta)\propto P_\theta(X=x)$

(with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)

Marco Cattaneo @ LMU Munich

- $\lambda_x:\Theta\to [0,1] \text{ is the (relative) likelihood function given } X=x, \text{ when}$ $\sup_{\theta\in\Theta}\lambda_x(\theta)=1 \quad \text{and} \quad \lambda_x(\theta)\propto P_\theta(X=x)$ (with $\lambda_x(\theta)\propto f_\theta(x)$ as approximation for continuous X)
- $ightharpoonup \lambda_x$ describes the relative plausibility of the possible values of θ in the light of the observation X=x, and can thus be used as a basis for post-data decision making

- $\lambda_x:\Theta o [0,1]$ is the (relative) likelihood function given X=x, when $\sup_{\theta\in\Theta}\lambda_x(\theta)=1\quad \text{and}\quad \lambda_x(\theta)\propto P_{\theta}(X=x)$
 - (with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)
- λ_x describes the relative plausibility of the possible values of θ in the light of the observation X=x, and can thus be used as a basis for post-data decision making
- ▶ prior information can be described by a prior likelihood function: if X_1 and X_2 are independent, then $\lambda_{(x_1,x_2)} \propto \lambda_{x_1} \lambda_{x_2}$; that is, when $X_2 = x_2$ is observed, the prior λ_{x_1} is updated to the posterior $\lambda_{(x_1,x_2)}$

 $\lambda_x:\Theta o [0,1]$ is the (relative) likelihood function given X=x, when $\sup_{\theta\in\Theta}\lambda_x(\theta)=1\quad \text{and}\quad \lambda_x(\theta)\propto P_{\theta}(X=x)$

(with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)

- λ_x describes the relative plausibility of the possible values of θ in the light of the observation X=x, and can thus be used as a basis for post-data decision making
- ▶ prior information can be described by a prior likelihood function: if X_1 and X_2 are independent, then $\lambda_{(x_1,x_2)} \propto \lambda_{x_1} \lambda_{x_2}$; that is, when $X_2 = x_2$ is observed, the prior λ_{x_1} is updated to the posterior $\lambda_{(x_1,x_2)}$
- ▶ strong similarity with the Bayesian approach (both satisfy the likelihood principle): a fundamental advantage of the likelihood approach is the possibility of not using prior information (since $\lambda_{x_1} \equiv 1$ describes complete ignorance)

▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$,

▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)
 - ▶ parametrization invariance: $b: \Theta \to \Theta$ bijection $\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda)$

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)
 - ▶ parametrization invariance: $b:\Theta\to\Theta$ bijection $\Rightarrow V(w\circ b,\lambda\circ b)=V(w,\lambda)$ (excludes Bayesian criteria $V(w,\lambda)=\frac{\int w\lambda\,d\mu}{\int\lambda\,d\mu}$ for infinite Θ)

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)
 - ▶ parametrization invariance: $b:\Theta\to\Theta$ bijection $\Rightarrow V(w\circ b,\lambda\circ b)=V(w,\lambda)$ (excludes Bayesian criteria $V(w,\lambda)=\frac{\int w\,\lambda\,d\mu}{\int\lambda\,d\mu}$ for infinite Θ)
 - ▶ consistency: $\mathcal{H} \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus \mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow \lim_{n \to \infty} V(c \ I_{\mathcal{H}} + c' \ I_{\Theta \setminus \mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)
 - ▶ parametrization invariance: $b:\Theta\to\Theta$ bijection $\Rightarrow V(w\circ b,\lambda\circ b)=V(w,\lambda)$ (excludes Bayesian criteria $V(w,\lambda)=\frac{\int w\,\lambda\,d\mu}{\int\lambda\,d\mu}$ for infinite Θ)
 - ▶ consistency: $\mathcal{H} \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus \mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow \lim_{n \to \infty} V(c \, I_{\mathcal{H}} + c' \, I_{\Theta \setminus \mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$ (excludes minimax criterion $V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta)$, implies calibration: $V(c, \lambda) = c$)

- ▶ likelihood decision criterion: minimize $V(W(\cdot,d),\lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w,w':\Theta\to[0,+\infty[$ and all likelihood functions $\lambda,\lambda_n:\Theta\to[0,1]$
 - ▶ monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)
 - ▶ parametrization invariance: $b:\Theta\to\Theta$ bijection $\Rightarrow V(w\circ b,\lambda\circ b)=V(w,\lambda)$ (excludes Bayesian criteria $V(w,\lambda)=\frac{\int w\,\lambda\,d\mu}{\int\lambda\,d\mu}$ for infinite Θ)
 - ▶ consistency: $\mathcal{H} \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus \mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow \lim_{n \to \infty} V(c \, l_{\mathcal{H}} + c' \, l_{\Theta \setminus \mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$ (excludes minimax criterion $V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta)$, implies calibration: $V(c, \lambda) = c$)
- ▶ likelihood decision function: $\delta: \mathcal{X} \to \mathcal{D}$ such that $\delta(x)$ minimizes $V(W(\cdot, d), \lambda_x)$

▶ likelihood decision criteria have the advantages of post-data methods:

- ▶ likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations

- ▶ likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation

- ▶ likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems

- ▶ likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems
- ▶ likelihood decision criteria have also important pre-data properties:

- ▶ likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems
- likelihood decision criteria have also important pre-data properties:
 - equivariance: for invariant decision problems, the likelihood decision functions are equivariant

- likelihood decision criteria have the advantages of post-data methods:
 - ▶ independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems
- likelihood decision criteria have also important pre-data properties:
 - equivariance: for invariant decision problems, the likelihood decision functions are equivariant
 - asymptotic optimality: under some regularity conditions, the likelihood decision functions $\delta_n: \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \mathcal{D}$ satisfy

$$\lim_{n\to\infty}W(\theta,\delta_n(X_1,\ldots,X_n))=\inf_{d\in\mathcal{D}}W(\theta,d)\quad P_{\theta}\text{-a.s.}$$

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$,

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

(nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

(nonadditive integral of w with respect to $\mathcal{H}\mapsto \sup_{\theta\in\mathcal{H}}\lambda(\theta)$)

point estimation:

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:
 - ▶ $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \, \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:
 - ▶ $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$
 - $\blacktriangleright \ W(\theta,H_1)=c\ I_{\theta\in\mathcal{H}} \ \ \text{and} \ \ W(\theta,H_0)=c'\ I_{\theta\in\Theta\setminus\mathcal{H}} \ \ \text{with} \ \ c\geq c'$

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$$

- point estimation:
 - $\triangleright \mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:
 - ▶ $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$
 - $W(\theta, H_1) = c I_{\theta \in \mathcal{H}}$ and $W(\theta, H_0) = c' I_{\theta \in \Theta \setminus \mathcal{H}}$ with $c \geq c'$
 - the likelihood ratio test with critical value c'/c is the likelihood decision function resulting from the MPL criterion

▶ $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- \blacktriangleright $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- \blacktriangleright estimation of θ with squared error:

- $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim} N(\theta,\sigma^2)$ with $\Theta=]0,+\infty[$ (that is, θ positive and σ known)
- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$

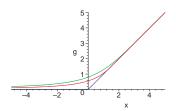
- \blacktriangleright $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- \blacktriangleright estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- \blacktriangleright $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:

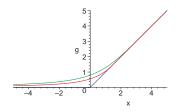
- $ightharpoonup X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- \blacktriangleright estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:
 - ▶ scale invariance and sufficiency: $\hat{\theta}(x_1, \dots, x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \sigma/\sqrt{n}$

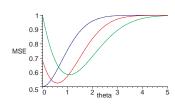
- $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim} N(\theta,\sigma^2)$ with $\Theta=]0,+\infty[$ (that is, θ positive and σ known)
- \blacktriangleright estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \dots, x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \sigma/\sqrt{n}$
 - ▶ asymptotic optimality (consistency): $\hat{\theta}(x_1, \dots, x_n) = \bar{x}$ when $\bar{x} \geq \sqrt{2} \, \sigma / \sqrt{n}$

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- \blacktriangleright estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \dots, x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \sigma/\sqrt{n}$
 - ▶ asymptotic optimality (consistency): $\hat{\theta}(x_1, \dots, x_n) = \bar{x}$ when $\bar{x} \geq \sqrt{2} \, \sigma / \sqrt{n}$



- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- \blacktriangleright estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- ▶ likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1,\ldots,x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \, \sigma/\sqrt{n}$
 - ▶ asymptotic optimality (consistency): $\hat{\theta}(x_1, \dots, x_n) = \bar{x}$ when $\bar{x} \geq \sqrt{2} \, \sigma / \sqrt{n}$





- ► this work:
 - fills a gap in the likelihood approach to statistics

- this work:
 - fills a gap in the likelihood approach to statistics
 - introduces an alternative to classical and Bayesian decision making

- this work:
 - fills a gap in the likelihood approach to statistics
 - ▶ introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods

- this work:
 - fills a gap in the likelihood approach to statistics
 - ▶ introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods
- likelihood decision making:
 - is post-data and equivariant

- this work:
 - fills a gap in the likelihood approach to statistics
 - ▶ introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods
- likelihood decision making:
 - ▶ is post-data and equivariant
 - ▶ is asymptotically optimal

- this work:
 - fills a gap in the likelihood approach to statistics
 - ▶ introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods
- likelihood decision making:
 - ▶ is post-data and equivariant
 - ▶ is asymptotically optimal
 - does not need prior information