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example: logistic regression with interval-censored covariate
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I for 468 green turtles, the data describe the presence or absence of marine
debris in the gastrointestinal system at the time of death, which is
interval-censored (Schuyler et al., 2014)

I the main question is if the probability of debris ingestion increased over time:
we decide to use logistic regression to answer it
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I how can we deal with incomplete/censored data?

I delete them or make them precise (e.g., interval midpoints) and apply the
conventional statistical method: easy, but what does the result mean?

I impute the precise values and apply the conventional statistical method: the
result depends on the imputation assumptions (e.g., uniform on intervals)

I apply the conventional statistical method to all compatible precise data sets:
why? and how?

I adapt the conventional statistical method to the case of incomplete/censored
data: we will follow this approach
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M-estimation: case with completely known data values

I data: X1, . . . ,Xn ∈ X i.i.d.

I M-estimator minimising the nonparametric MLE of E [ρ(Xi , θ)]:

θ̂(X1, . . . ,Xn) = argmin
θ

∑n
i=1ρ(Xi , θ)

I nonparametric/pragmatic approach: under weak regularity conditions (Huber
and Ronchetti, 2009),

θ̂(X1, . . . ,Xn)
a.s.−−−→

n→∞
argmin

θ
E [ρ(Xi , θ)]

I parametric/idealistic approach: assuming further Xi ∼ Pθ and
E [ρ(Xi , θ)] < E [ρ(Xi , θ

′)],

θ̂(X1, . . . ,Xn)
a.s.−−−→

n→∞
θ
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M-estimation: case with not completely known data values
I data: S1, . . . ,Sn ⊆ X i.i.d., with Xi ∈ Si unknown

I M-estimator minimising the nonparametric MLE of E [ρ(Xi , θ)]:

θ̂(S1, . . . ,Sn)
?
= argmin

θ
co
{∑n

i=1ρ(xi , θ) : xi ∈ Si
}

I nonparametric/pragmatic approach: under weak regularity conditions,

θ̂minimax(S1, . . . ,Sn)
a.s.−−−→

n→∞
argmin

θ
E [ρ(Xi , θ)],

where E [ρ(Xi , θ)] is the maximum/supremum expectation compatible with
the distribution of Si

I parametric/idealistic approach: under additional assumptions,

θ̂minimin(S1, . . . ,Sn)
a.s.−−−→

n→∞
[θ],

where [θ] is the identification region of θ (Manski, 2003): smoothing
corrections (of the ε-minimin form) may be needed in case of partial
identification

Marco Cattaneo @ University of Hull M-estimation when data values are not completely known 4/7



M-estimation: case with not completely known data values
I data: S1, . . . ,Sn ⊆ X i.i.d., with Xi ∈ Si unknown

I M-estimator minimising the nonparametric MLE of E [ρ(Xi , θ)]:

θ̂(S1, . . . ,Sn)
?
= argmin

θ
co
{∑n

i=1ρ(xi , θ) : xi ∈ Si
}

I nonparametric/pragmatic approach: under weak regularity conditions,

θ̂minimax(S1, . . . ,Sn)
a.s.−−−→

n→∞
argmin

θ
E [ρ(Xi , θ)],

where E [ρ(Xi , θ)] is the maximum/supremum expectation compatible with
the distribution of Si

I parametric/idealistic approach: under additional assumptions,

θ̂minimin(S1, . . . ,Sn)
a.s.−−−→

n→∞
[θ],

where [θ] is the identification region of θ (Manski, 2003): smoothing
corrections (of the ε-minimin form) may be needed in case of partial
identification

Marco Cattaneo @ University of Hull M-estimation when data values are not completely known 4/7



M-estimation: case with not completely known data values
I data: S1, . . . ,Sn ⊆ X i.i.d., with Xi ∈ Si unknown

I M-estimator minimising the nonparametric MLE of E [ρ(Xi , θ)]:

θ̂(S1, . . . ,Sn)
?
= argmin

θ
co
{∑n

i=1ρ(xi , θ) : xi ∈ Si
}

I nonparametric/pragmatic approach: under weak regularity conditions,

θ̂minimax(S1, . . . ,Sn)
a.s.−−−→

n→∞
argmin

θ
E [ρ(Xi , θ)],

where E [ρ(Xi , θ)] is the maximum/supremum expectation compatible with
the distribution of Si

I parametric/idealistic approach: under additional assumptions,

θ̂minimin(S1, . . . ,Sn)
a.s.−−−→

n→∞
[θ],

where [θ] is the identification region of θ (Manski, 2003): smoothing
corrections (of the ε-minimin form) may be needed in case of partial
identification

Marco Cattaneo @ University of Hull M-estimation when data values are not completely known 4/7



M-estimation: case with not completely known data values
I data: S1, . . . ,Sn ⊆ X i.i.d., with Xi ∈ Si unknown

I M-estimator minimising the nonparametric MLE of E [ρ(Xi , θ)]:

θ̂(S1, . . . ,Sn)
?
= argmin

θ
co
{∑n

i=1ρ(xi , θ) : xi ∈ Si
}

I nonparametric/pragmatic approach: under weak regularity conditions,

θ̂minimax(S1, . . . ,Sn)
a.s.−−−→

n→∞
argmin

θ
E [ρ(Xi , θ)],

where E [ρ(Xi , θ)] is the maximum/supremum expectation compatible with
the distribution of Si

I parametric/idealistic approach: under additional assumptions,

θ̂minimin(S1, . . . ,Sn)
a.s.−−−→

n→∞
[θ],

where [θ] is the identification region of θ (Manski, 2003): smoothing
corrections (of the ε-minimin form) may be needed in case of partial
identification

Marco Cattaneo @ University of Hull M-estimation when data values are not completely known 4/7



example: logistic regression with interval-censored covariate

1975 1980 1985 1990 1995 2000 2005

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

de
br

is
 in

ge
st

io
n 

pr
ob

ab
ili

ty

year

I θ̂minimax(s1, . . . , sn) = θ̂(x1, . . . , xn) when xi = argmaxxi∈si ρ
(
xi , θ̂(x1, . . . , xn)

)

I the minimax logistic regression with one interval-censored covariate can
always be obtained by computing at most two conventional logistic
regressions (for the two extreme choices of compatible precise data sets)

I in the logistic regression with the (unknown) precise covariate, the increase
over time of the debris ingestion probability is statistically significant (p-value
< 0.001) according to the LR test, because the same is true in the
conventional (minimax) logistic regression with worst-case precise data values

I note however that this reasoning is not valid in general for other tests (e.g.,
the Wald test)
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conclusions

I M-estimation can be adapted to the case of incomplete/censored data

I in particular, the minimax M-estimation:

I generalises the nonparametric/pragmatic approach of finding the best fit to
the available data, without assuming the existence of a true model

I can often be implemented as a conventional M-estimation with worst-case
precise data values, allowing also statistical inferences about the distribution of
the true (but not completely known) precise data values

I can be slightly generalised to include also, e.g., minimax Least Quantile of
Squares regression (Cattaneo and Wiencierz, 2012, 2014), or minimax Support
Vector Regression (Utkin and Coolen, 2011; Wiencierz and Cattaneo, 2015)

I by contrast, the parametric/idealistic approach of finding the hypothetical
true model can be pursued by minimin M-estimation, but is often severely
hindered by partial identification
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