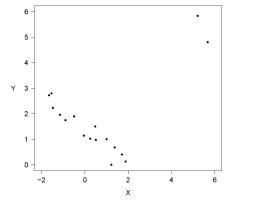
On the implementation of Likelihood-based Imprecise Regression

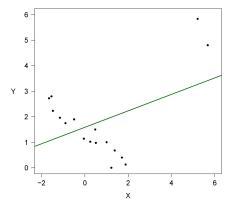
Marco Cattaneo and Andrea Wiencierz Department of Statistics, LMU Munich

> CFE-ERCIM 2011, London, UK 18 December 2011



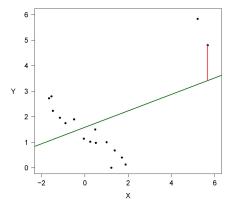
▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



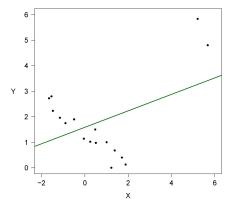
▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

▶ linear regression: $\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}$ with $f_{a,b} : x \mapsto a + bx$



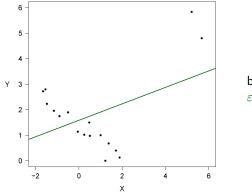
▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

- ▶ linear regression: $\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}$ with $f_{a,b} : x \mapsto a + bx$
- ▶ (absolute) residuals: $r_{f,i} = |y_i f(x_i)|$ for each $f \in \mathcal{F}, i \in \{1, ..., n\}$



▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

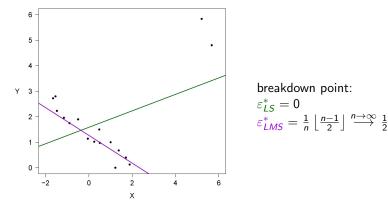
- ▶ linear regression: $\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}$ with $f_{a,b} : x \mapsto a + bx$
- ▶ (absolute) residuals: $r_{f,i} = |y_i f(x_i)|$ for each $f \in \mathcal{F}, i \in \{1, ..., n\}$
- Least Squares: $f_{LS} = \arg \min_f \sum_i r_{f,i}^2$



breakdown point: $\varepsilon_{LS}^* = 0$

▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

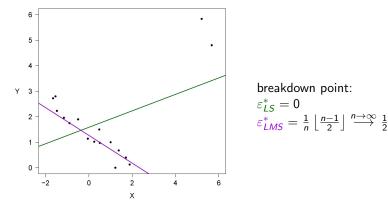
- ▶ linear regression: $\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}$ with $f_{a,b} : x \mapsto a + bx$
- ▶ (absolute) residuals: $r_{f,i} = |y_i f(x_i)|$ for each $f \in \mathcal{F}, i \in \{1, ..., n\}$
- Least Squares: $f_{LS} = \arg \min_f \sum_i r_{f,i}^2 = \arg \min_f mean_i r_{f,i}^2$



▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

- ▶ linear regression: $\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}$ with $f_{a,b} : x \mapsto a + bx$
- ▶ (absolute) residuals: $r_{f,i} = |y_i f(x_i)|$ for each $f \in \mathcal{F}, i \in \{1, ..., n\}$
- Least Squares: $f_{LS} = \arg \min_f \sum_i r_{f,i}^2 = \arg \min_f mean_i r_{f,i}^2$
- Least Median of Squares: $f_{LMS} = \arg \min_f med_i r_{f,i}^2$

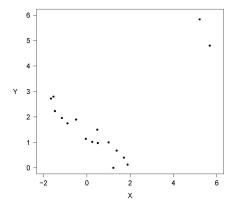
Marco Cattaneo and Andrea Wiencierz @ LMU Munich

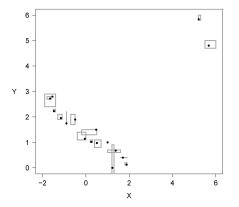


▶ precise data: $(x_i, y_i) \in \mathbb{R}^2$ for each $i \in \{1, ..., n\}$

- ▶ linear regression: $\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}$ with $f_{a,b} : x \mapsto a + bx$
- ▶ (absolute) residuals: $r_{f,i} = |y_i f(x_i)|$ for each $f \in \mathcal{F}, i \in \{1, ..., n\}$
- Least Squares: $f_{LS} = \arg \min_f \sum_i r_{f,i}^2 = \arg \min_f mean_i r_{f,i}^2$
- Least Median of Squares: $f_{LMS} = \arg \min_f med_i r_{f,i}^2 = \arg \min_f med_i r_{f,i}$

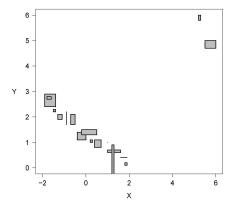
Marco Cattaneo and Andrea Wiencierz @ LMU Munich





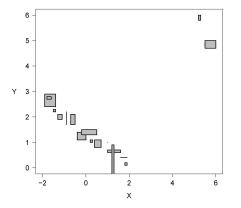
▶ imprecise data: $(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i) \in \mathbb{R}^4$ for each $i \in \{1, ..., n\}$

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



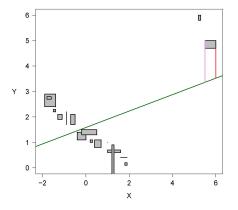
▶ imprecise data: $(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i) \in \mathbb{R}^4$ for each $i \in \{1, ..., n\}$

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression



- ▶ imprecise data: $(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i) \in \mathbb{R}^4$ for each $i \in \{1, ..., n\}$
- ▶ nonparametric statistical model: *P* is the set of all probability measures *P* such that <u>X</u>_i, X_i, <u>X</u>_i, <u>Y</u>_i, Y_i, <u>Y</u>_i, <u>Y</u>_i have a joint distribution satisfying

$$\underline{X}_i \leq X_i \leq \overline{X}_i$$
 and $\underline{Y}_i \leq Y_i \leq \overline{Y}_i$ *P*-a.s.



imprecise residuals:

$$\underline{r}_{f,i} = \min_{\substack{(x,y) \in [\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]}} |y - f(x)|$$
$$\overline{r}_{f,i} = \sup_{\substack{(x,y) \in [\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]}} |y - f(x)|$$
for each $f \in \mathcal{F}, i \in \{1, \dots, n\}$

▶ imprecise data: $(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i) \in \mathbb{R}^4$ for each $i \in \{1, ..., n\}$

▶ nonparametric statistical model: *P* is the set of all probability measures *P* such that <u>X</u>_i, X_i, <u>X</u>_i, <u>Y</u>_i, Y_i, <u>Y</u>_i, <u>Y</u>_i have a joint distribution satisfying

$$\underline{X}_i \leq X_i \leq \overline{X}_i$$
 and $\underline{Y}_i \leq Y_i \leq \overline{Y}_i$ *P*-a.s.

imprecise probability models naturally appear with imprecise data:

• imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{\underline{X},\overline{X},\underline{Y},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\underline{\hat{P}}_{\underline{X},\underline{Y}}$ is a belief function with focal sets $[\underline{x}_i, \overline{x}_i] \times [y_i, \overline{y}_i]$

• imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{\underline{X},\overline{X},\underline{Y},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\underline{\hat{P}}_{X,Y}$ is a belief function with focal sets $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$

► likelihood function:
$$lik : P \mapsto \prod_{i=1}^{n} \frac{P(\underline{X}_i = \underline{x}_i, \overline{X}_i = \overline{x}_i, \underline{Y}_i = \underline{y}_i, \overline{Y}_i = \overline{y}_i)}{\widehat{P}_{\underline{X}, \overline{X}, \underline{Y}, \overline{Y}}(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i)}$$

• imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{\underline{X},\overline{X},\underline{Y},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\underline{\hat{P}}_{X,Y}$ is a belief function with focal sets $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$

► likelihood function:
$$lik : P \mapsto \prod_{i=1}^{n} \frac{P(\underline{X}_i = \underline{x}_i, \overline{X}_i = \overline{x}_i, \underline{Y}_i = \underline{y}_i, \overline{Y}_i = \overline{y}_i)}{\widehat{P}_{\underline{X}, \overline{X}, \underline{Y}, \overline{Y}}(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i)}$$

▶ likelihood-based learning of imprecise probability model:
 P>_β = {P ∈ P : lik(P) > β} for some cutoff point β ∈ (0,1)

• imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\widehat{P}_{\underline{X},\overline{X},\underline{Y},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\underline{\widehat{P}}_{X,Y}$ is a belief function with focal sets $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$

► likelihood function:
$$lik : P \mapsto \prod_{i=1}^{n} \frac{P(\underline{X}_i = \underline{x}_i, \overline{X}_i = \overline{x}_i, \underline{Y}_i = \underline{y}_i, \overline{Y}_i = \overline{y}_i)}{\widehat{P}_{\underline{X}, \overline{X}, \underline{Y}, \overline{Y}}(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i)}$$

- ▶ likelihood-based learning of imprecise probability model: $\mathcal{P}_{>\beta} = \{P \in \mathcal{P} : lik(P) > \beta\}$ for some cutoff point $\beta \in (0, 1)$
- if β ≥ 2⁻ⁿ, then for each f ∈ F, the median of the distribution of the (precise) residuals is imprecise under the model P_{>β}:

$$\underline{med}R_f = \underline{r}_{f,(\underline{k}+1)}$$
 and $\overline{med}R_f = \overline{r}_{f,(\overline{k})}$,

where $\sqrt[n]{\beta} \mapsto \frac{\overline{k}}{n}$ is a decreasing bijection $[\frac{1}{2}, 1) \to (\frac{1}{2}, 1]$, and $\underline{k} = n - \overline{k}$

• imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\widehat{P}_{\underline{X},\overline{X},\underline{Y},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\underline{\widehat{P}}_{X,Y}$ is a belief function with focal sets $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$

► likelihood function:
$$lik : P \mapsto \prod_{i=1}^{n} \frac{P(\underline{X}_i = \underline{x}_i, \overline{X}_i = \overline{x}_i, \underline{Y}_i = \underline{y}_i, \overline{Y}_i = \overline{y}_i)}{\widehat{P}_{\underline{X}, \overline{X}, \underline{Y}, \overline{Y}}(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i)}$$

- ▶ likelihood-based learning of imprecise probability model: $\mathcal{P}_{>\beta} = \{P \in \mathcal{P} : lik(P) > \beta\}$ for some cutoff point $\beta \in (0, 1)$
- if β ≥ 2⁻ⁿ, then for each f ∈ F, the median of the distribution of the (precise) residuals is imprecise under the model P_{>β}:

$$\underline{med}R_f = \underline{r}_{f,(\underline{k}+1)}$$
 and $\overline{med}R_f = \overline{r}_{f,(\overline{k})}$,

where $\sqrt[n]{\beta} \mapsto \frac{\overline{k}}{n}$ is a decreasing bijection $[\frac{1}{2}, 1) \to (\frac{1}{2}, 1]$, and $\underline{k} = n - \overline{k}$

► Likelihood-based Region Minimax: $f_{LRM} = \arg \min_{f} \overline{med}R_{f} = \arg \min_{f} \overline{r}_{f,(\bar{k})}$

• imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\widehat{P}_{\underline{X},\overline{X},\underline{Y},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\underline{\widehat{P}}_{X,Y}$ is a belief function with focal sets $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$

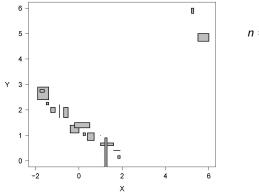
► likelihood function:
$$lik : P \mapsto \prod_{i=1}^{n} \frac{P(\underline{X}_i = \underline{x}_i, \overline{X}_i = \overline{x}_i, \underline{Y}_i = \underline{y}_i, \overline{Y}_i = \overline{y}_i)}{\widehat{P}_{\underline{X}, \overline{X}, \underline{Y}, \overline{Y}}(\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i)}$$

- ▶ likelihood-based learning of imprecise probability model: $\mathcal{P}_{>\beta} = \{P \in \mathcal{P} : lik(P) > \beta\}$ for some cutoff point $\beta \in (0, 1)$
- if β ≥ 2⁻ⁿ, then for each f ∈ F, the median of the distribution of the (precise) residuals is imprecise under the model P_{>β}:

$$\underline{med}R_f = \underline{r}_{f,(\underline{k}+1)}$$
 and $\overline{med}R_f = \overline{r}_{f,(\overline{k})}$,

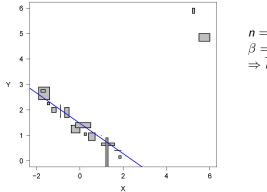
where $\sqrt[n]{\beta} \mapsto \frac{\overline{k}}{n}$ is a decreasing bijection $[\frac{1}{2}, 1) \to (\frac{1}{2}, 1]$, and $\underline{k} = n - \overline{k}$

- Likelihood-based Region Minimax: $f_{LRM} = \arg \min_{f} \overline{med}R_{f} = \arg \min_{f} \overline{r}_{f,(\overline{k})}$
- ▶ interval dominance: U = {f ∈ F : medR_f ≤ medR_{fLRM}} is the set of all undominated regression lines



$$n = 17$$

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression

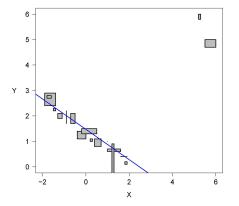


$$n = 17$$

$$\beta = 0.8$$

$$\Rightarrow \overline{k} = 10$$

Marco Cattaneo and Andrea Wiencierz @ LMU Munich On the implementation of Likelihood-based Imprecise Regression

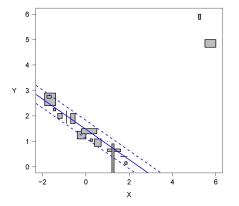


$$n = 17$$

$$\beta = 0.8$$

$$\Rightarrow \overline{k} = 10$$

if less that \overline{k} intervals $[\underline{y}_i, \overline{y}_i]$ are bounded, then $\overline{med}R_f = +\infty$ for each $f \in \mathcal{F}$



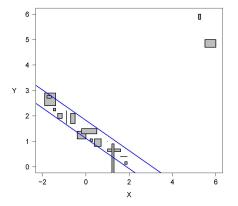
$$n = 17$$

$$\beta = 0.8$$

$$\Rightarrow \overline{k} = 10$$

if less that \overline{k} intervals $[\underline{y}_i, \overline{y}_i]$ are bounded, then $\overline{med}R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \overline{med}R_{f_{LRM}}$



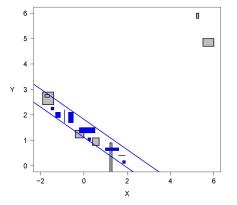
$$n = 17$$

$$\beta = 0.8$$

$$\Rightarrow \overline{k} = 10$$

if less that \overline{k} intervals $[\underline{y}_i, \overline{y}_i]$ are bounded, then $\overline{med}R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \overline{med}R_{f_{LRM}} = f_{LRM} \pm \overline{r}_{f_{LRM},(\overline{k})}$

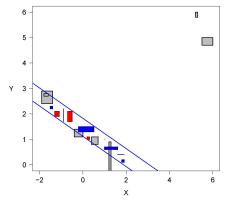


n = 17 $\beta = 0.8$ $\Rightarrow \overline{k} = 10$

if less that \overline{k} intervals $[\underline{y}_i, \overline{y}_i]$ are bounded, then $\overline{med}R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \overline{med}R_{f_{LRM}} = f_{LRM} \pm \overline{r}_{f_{LRM},(\overline{k})}$

▶ $f_{LRM} \pm \overline{med}R_{f_{LRM}}$ is the thinnest strip of the form $f \pm q$ containing (at least) \overline{k} imprecise data $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$, for all $f \in \mathcal{F}, q \in [0, +\infty)$



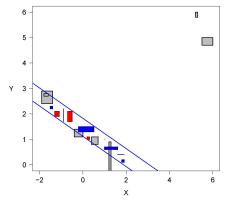
n = 17 $\beta = 0.8$ $\Rightarrow \overline{k} = 10$

if less that \overline{k} intervals $[\underline{y}_i, \overline{y}_i]$ are bounded, then $\overline{med}R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \overline{med}R_{f_{LRM}} = f_{LRM} \pm \overline{r}_{f_{LRM},(\overline{k})}$

▶ $f_{LRM} \pm \overline{med}R_{f_{LRM}}$ is the thinnest strip of the form $f \pm q$ containing (at least) \overline{k} imprecise data $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$, for all $f \in \mathcal{F}, q \in [0, +\infty)$

▶ if the slope $b_{LRM} \neq 0$, then the imprecise data contained in $f_{LRM} \pm \overline{med}R_{f_{LRM}}$ are bounded and (at least) 3 of them touch the boundary of the strip

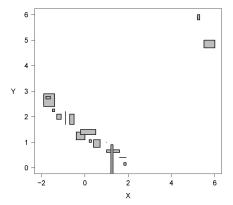


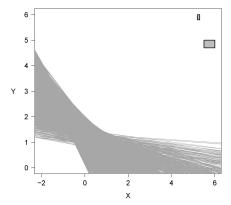
n = 17 $\beta = 0.8$ $\Rightarrow \overline{k} = 10$

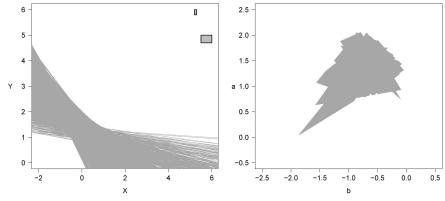
if less that \overline{k} intervals $[\underline{y}_i, \overline{y}_i]$ are bounded, then $\overline{med}R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \overline{med}R_{f_{LRM}} = f_{LRM} \pm \overline{r}_{f_{LRM},(\overline{k})}$

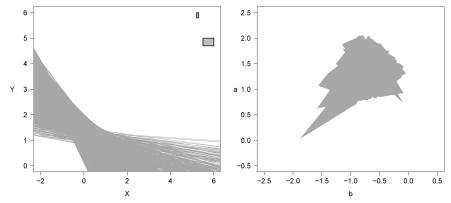
- ▶ $f_{LRM} \pm \overline{med}R_{f_{LRM}}$ is the thinnest strip of the form $f \pm q$ containing (at least) \overline{k} imprecise data $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$, for all $f \in \mathcal{F}, q \in [0, +\infty)$
- ▶ if the slope $b_{LRM} \neq 0$, then the imprecise data contained in $f_{LRM} \pm \overline{med}R_{f_{LRM}}$ are bounded and (at least) 3 of them touch the boundary of the strip
- ► therefore, b_{LRM} is either 0 or it is determined by a couple of bounded imprecise data, which gives us at most 4⁽ⁿ⁾₂ + 1 possible values for b_{LRM}







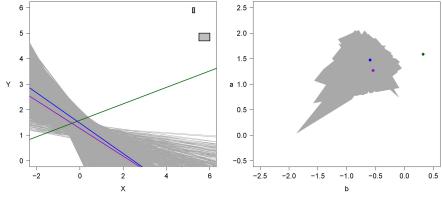
▶ set of undominated parameters: $\{(a, b) \in \mathbb{R}^2 : f_{a,b} \in \mathcal{U}\}$



▶ set of undominated parameters: $\left\{(a,b) \in \mathbb{R}^2 : f_{a,b} \in \mathcal{U}\right\}$ =

$$= \bigcup_{i=1}^{k} \left\{ (a,b) \in \mathbb{R}^{2} : \underline{d}_{b,(i+\underline{k})} - \overline{med}R_{f_{LRM}} \leq a \leq \overline{d}_{b,(i)} + \overline{med}R_{f_{LRM}} \right\},$$

where $\underline{d}_{b,i} = \inf_{x \in [\underline{x}_{i},\overline{x}_{i}]}(\underline{y}_{i} - bx)$ and $\overline{d}_{b,i} = \sup_{x \in [\underline{x}_{i},\overline{x}_{i}]}(\overline{y}_{i} - bx)$



▶ set of undominated parameters: $\left\{(a,b) \in \mathbb{R}^2 : f_{a,b} \in \mathcal{U}\right\}$ =

 $= \bigcup_{i=1}^{k} \left\{ (a, b) \in \mathbb{R}^{2} : \underline{d}_{b,(i+\underline{k})} - \overline{med}R_{f_{LRM}} \le a \le \overline{d}_{b,(i)} + \overline{med}R_{f_{LRM}} \right\},$ where $\underline{d}_{b,i} = \inf_{x \in [\underline{x}_{i}, \overline{x}_{i}]} (\underline{y}_{i} - bx)$ and $\overline{d}_{b,i} = \sup_{x \in [\underline{x}_{i}, \overline{x}_{i}]} (\overline{y}_{i} - bx)$ \blacktriangleright for example: $\overline{med}R_{f_{LRM}} \approx 0.354, \underline{med}R_{f_{LMS}} \approx 0.002, \underline{med}R_{f_{LS}} \approx 0.909$

statistical properties of LIR

• breakdown point:
$$\varepsilon_{LIR}^* = \frac{k}{n} \stackrel{n \to \infty}{\longrightarrow} \frac{1}{2}$$

statistical properties of LIR

• breakdown point: $\varepsilon_{LIR}^* = \frac{k}{n} \stackrel{n \to \infty}{\longrightarrow} \frac{1}{2}$

▶ coverage probability of \mathcal{U} : $Y_i = a_0 + b_0 X_i + \varepsilon_i$ with $X_i, \varepsilon_i \stackrel{i.i.d.}{\sim} F_0$

statistical properties of LIR

• breakdown point: $\varepsilon_{LIR}^* = \frac{k}{n} \xrightarrow{n \to \infty} \frac{1}{2}$

► coverage probability of \mathcal{U} : $Y_i = a_0 + b_0 X_i + \varepsilon_i$ with $X_i, \varepsilon_i \stackrel{i.i.d.}{\sim} F_0$

β	п	$\underline{P}(\underline{med}R_f \leq medR_f \leq \overline{med}R_f)$	F ₀	$\underline{P}(f_{a_0,b_0} \in \mathcal{U})$
0.5	20	0.737	Normal	0.83
			Cauchy	0.97
	1000	0.758	Normal	1.00
			Cauchy	1.00
0.75	20	0.497	Normal	0.39
			Cauchy	0.72
	1000	0.533	Normal	0.91
			Cauchy	1.00
0.999	20	0.176	Normal	0.03
			Cauchy	0.11
	1000	0.025	Normal	0.00
			Cauchy	0.01

references

- Cattaneo, M., and Wiencierz, A. (2011*a*). Likelihood-based Imprecise Regression. Technical Report 116. Department of Statistics, LMU Munich.
- Cattaneo, M., and Wiencierz, A. (2011*b*). Regression with Imprecise Data: A Robust Approach. In *ISIPTA '11, Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications.* SIPTA, 119–128.
- Cattaneo, M., and Wiencierz, A. (2011*c*). Robust regression with imprecise data. Technical Report 114. Department of Statistics, LMU Munich.
- Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley.
- Rousseeuw, P. J., and Leroy, A. M. (1987). *Robust Regression and Outlier Detection*. Wiley.
- Steele, J., and Steiger, W. (1986). Algorithms and complexity for least median of squares regression. *Discrete Appl. Math.* 14, 93–100.