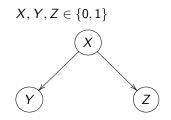
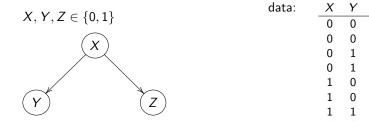
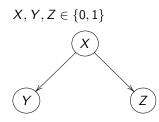
Profile Likelihood Inference in Graphical Models

Marco Cattaneo Department of Statistics, LMU Munich

Statistische Woche 2012, Wien, Austria 18 September 2012



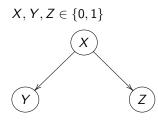




data:	Χ	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

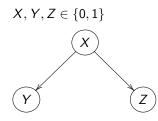
Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



data:	Χ	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

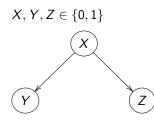
▶ ML estimate: 0.45



data:	Χ	Y	Ζ	#
	0	0	0	15
	0	0	1	25
	0	1	0	7
	0	1	1	5
	1	0	0	6
	1	0	1	35 3
	1	1	0	3
	1	1	1	4
				100

inference about P(X = 1 | Y = 1, Z = 1):

- ML estimate: 0.45
- Bayesian estimate with uniform priors: 0.46



inference about P(X = 1 | Y = 1, Z = 1):

lik

0.2

0.2

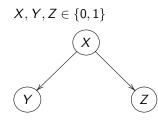
0.4

P(X = 1 | Y = 1, Z = 1)

0.6

0.8

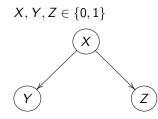
- Bayesian estimate with uniform priors: 0.46
- profile likelihood function:



data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	3 <mark>00</mark>
	1	1	1	400
				100 <mark>00</mark>

inference about P(X = 1 | Y = 1, Z = 1):

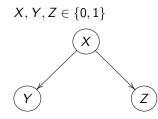
Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



data:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	3 <mark>00</mark>
	1	1	1	400
				100 <mark>00</mark>

inference about P(X = 1 | Y = 1, Z = 1):

▶ ML estimate: 0.45

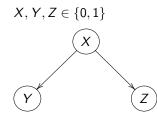


:	Χ	Y	Ζ	#
	0	0	0	15 <mark>00</mark>
	0	0	1	25 <mark>00</mark>
	0	1	0	700
	0	1	1	5 <mark>00</mark>
	1	0	0	6 <mark>00</mark>
	1	0	1	35 <mark>00</mark>
	1	1	0	3 <mark>00</mark>
	1	1	1	400
				100 <mark>00</mark>

data

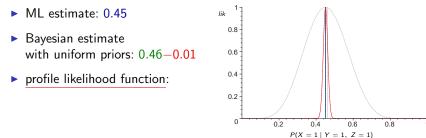
inference about P(X = 1 | Y = 1, Z = 1):

- ▶ ML estimate: 0.45
- Bayesian estimate with uniform priors: 0.46-0.01



Χ	Y	Ζ	#
0	0	0	15 <mark>00</mark>
0	0	1	25 <mark>00</mark>
0	1	0	7 <mark>00</mark>
0	1	1	5 <mark>00</mark>
1	0	0	6 <mark>00</mark>
1	0	1	35 <mark>00</mark>
1	1	0	3 <mark>00</mark>
1	1	1	4 <mark>00</mark>
			100 <mark>00</mark>
	0 0 0 1 1 1	0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$

inference about P(X = 1 | Y = 1, Z = 1):



▶ probabilistic model: $\{P_{\theta} : \theta \in \Theta\}$

- ▶ probabilistic model: $\{P_{\theta} : \theta \in \Theta\}$
- ▶ likelihood function: $lik : \Theta \to \mathbb{R}_{\geq 0}$ with $lik(\theta) \propto P_{\theta}(data)$

- ▶ probabilistic model: $\{P_{\theta} : \theta \in \Theta\}$
- ▶ likelihood function: $lik : \Theta \to \mathbb{R}_{\geq 0}$ with $lik(\theta) \propto P_{\theta}(data)$
- quantity of interest: $g(\theta)$ with $g: \Theta \to \mathbb{R}$

- probabilistic model: $\{P_{\theta} : \theta \in \Theta\}$
- ▶ likelihood function: $lik : \Theta \to \mathbb{R}_{\geq 0}$ with $lik(\theta) \propto P_{\theta}(data)$
- quantity of interest: $g(\theta)$ with $g: \Theta \to \mathbb{R}$
- ▶ in the example: $g(\theta) = P_{\theta}(X = 1 | Y = 1, Z = 1)$

- probabilistic model: $\{P_{\theta} : \theta \in \Theta\}$
- ▶ likelihood function: $lik : \Theta \to \mathbb{R}_{\geq 0}$ with $lik(\theta) \propto P_{\theta}(data)$
- quantity of interest: $g(\theta)$ with $g: \Theta \to \mathbb{R}$
- ▶ in the example: $g(\theta) = P_{\theta}(X = 1 | Y = 1, Z = 1)$
- ▶ profile likelihood function: $lik_g : \mathbb{R} \to \mathbb{R}_{\geq 0}$ with

$$lik_g(x) = \sup_{\theta \in \Theta : g(\theta) = x} lik(\theta)$$

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models

▶ let $f : g(\Theta) \to \mathbb{R}_{>0}$ be a strictly increasing function, and define $g' = f \circ g : \Theta \to \mathbb{R}_{>0}$

- ► let $f : g(\Theta) \to \mathbb{R}_{>0}$ be a strictly increasing function, and define $g' = f \circ g : \Theta \to \mathbb{R}_{>0}$
- ▶ in the example: $f(x) = \frac{x}{1-x}$, so that $g'(\theta) = \frac{P(X=1, Y=1, Z=1)}{P(X=0, Y=1, Z=1)}$

- ▶ let $f : g(\Theta) \to \mathbb{R}_{>0}$ be a strictly increasing function, and define $g' = f \circ g : \Theta \to \mathbb{R}_{>0}$
- ▶ in the example: $f(x) = \frac{x}{1-x}$, so that $g'(\theta) = \frac{P(X=1, Y=1, Z=1)}{P(X=0, Y=1, Z=1)}$
- ▶ for some $\alpha \in \mathbb{R}$, if θ_{α} maximizes the modified likelihood function $lik': \Theta \to \mathbb{R}_{\geq 0}$ with

 $lik'(\theta) = lik(\theta) g'(\theta)^{\alpha}$

- ▶ let $f : g(\Theta) \to \mathbb{R}_{>0}$ be a strictly increasing function, and define $g' = f \circ g : \Theta \to \mathbb{R}_{>0}$
- ▶ in the example: $f(x) = \frac{x}{1-x}$, so that $g'(\theta) = \frac{P(X=1, Y=1, Z=1)}{P(X=0, Y=1, Z=1)}$
- for some $\alpha \in \mathbb{R}$, if θ_{α} maximizes the modified likelihood function $lik': \Theta \to \mathbb{R}_{\geq 0}$ with

$${\it lik}'(heta)={\it lik}(heta)\,{\it g}'(heta)^lpha$$

▶ then the point $(g(\theta_{\alpha}), lik(\theta_{\alpha}))$ lies on the graph of lik_g , since

$$lik(\theta_{\alpha}) = \max_{\theta \in \Theta : g(\theta) = g(\theta_{\alpha})} lik(\theta) = lik_{g}(g(\theta_{\alpha}))$$

parametric representation

▶ in particular (if well-defined), $\theta_0 = \hat{\theta}_{ML}$, and $\alpha \mapsto g(\theta_\alpha)$ is strictly increasing

parametric representation

- ▶ in particular (if well-defined), $\theta_0 = \hat{\theta}_{ML}$, and $\alpha \mapsto g(\theta_\alpha)$ is strictly increasing
- under regularity conditions, for some interval $\mathcal{I} \subseteq \mathbb{R}$,

 $\{(g(\theta_{\alpha}), lik(\theta_{\alpha})) : \alpha \in \mathcal{I}\}$

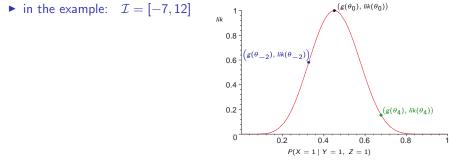
is a parametric representation of the graph of likg

parametric representation

- ▶ in particular (if well-defined), $\theta_0 = \hat{\theta}_{ML}$, and $\alpha \mapsto g(\theta_\alpha)$ is strictly increasing
- under regularity conditions, for some interval $\mathcal{I} \subseteq \mathbb{R}$,

$$\{(g(heta_{lpha}), \textit{lik}(heta_{lpha})) : lpha \in \mathcal{I}\}$$

is a parametric representation of the graph of likg



in a Bayesian network with categorical variables and known graph, if the dataset is (almost) complete, then the likelihood function factorizes:

$$lik(heta) = \prod_{i=1}^{m} \prod_{j=1}^{k_i} heta_{i,j}^{n_{i,j}}$$
, where $\sum_{j=1}^{k_i} heta_{i,j} = 1$ for all i

in a Bayesian network with categorical variables and known graph, if the dataset is (almost) complete, then the likelihood function factorizes:

$$lik(\theta) = \prod_{i=1}^{m} \prod_{j=1}^{k_i} \theta_{i,j}^{n_{i,j}}$$
, where $\sum_{j=1}^{k_i} \theta_{i,j} = 1$ for all i

if (the f-transform of) the quantity of interest factorizes as well:

$$g'(heta) = \prod_{i=1}^m \prod_{j=1}^{k_i} heta_{i,j}^{q_{i,j}} ext{ with } q_{i,j} \in \mathbb{R}$$

in a Bayesian network with categorical variables and known graph, if the dataset is (almost) complete, then the likelihood function factorizes:

$$lik(\theta) = \prod_{i=1}^{m} \prod_{j=1}^{k_i} \theta_{i,j}^{n_{i,j}}$$
, where $\sum_{j=1}^{k_i} \theta_{i,j} = 1$ for all i

if (the f-transform of) the quantity of interest factorizes as well:

$$g'(heta) = \prod_{i=1}^m \prod_{j=1}^{k_i} heta_{i,j}^{q_{i,j}} \hspace{0.1 in} ext{with} \hspace{0.1 in} q_{i,j} \in \mathbb{R}$$

• in the example: $q_{i,j} \in \{-1,0,1\}$

then the modified likelihood function

$$lik'(\theta) = lik(\theta) g'(\theta)^{\alpha} = \prod_{i=1}^{m} \prod_{j=1}^{k_i} \theta_{i,j}^{n_{i,j}+\alpha q_{i,j}}$$

can be seen as a **likelihood function with modified data**, and is maximized by the corresponding "relative frequencies"

$$(\theta_{\alpha})_{i,j} = \frac{n_{i,j} + \alpha q_{i,j}}{\sum_{j'=1}^{k_i} (n_{i,j'} + \alpha q_{i,j'})}$$

then the modified likelihood function

$$lik'(\theta) = lik(\theta) g'(\theta)^{\alpha} = \prod_{i=1}^{m} \prod_{j=1}^{k_i} \theta_{i,j}^{n_{i,j}+\alpha q_{i,j}}$$

can be seen as a **likelihood function with modified data**, and is maximized by the corresponding "relative frequencies"

$$(\theta_{\alpha})_{i,j} = \frac{n_{i,j} + \alpha q_{i,j}}{\sum_{j'=1}^{k_i} (n_{i,j'} + \alpha q_{i,j'})}$$

parametric representation of the graph of lik_g:

 $\{(g(heta_lpha), \textit{lik}(heta_lpha)): lpha \in \mathcal{I}\}$,

where
$$\mathcal{I} = \{ \alpha \in \mathbb{R} : n_{i,j} + \alpha \ q_{i,j} \ge 0 \text{ for all } i, j \}$$

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models

classification

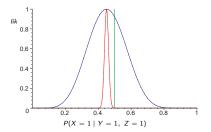
► **application:** Bayesian network classifier in which a class is returned only when the probabilities can be estimated with sufficient certainty

classification

- ► **application:** Bayesian network classifier in which a class is returned only when the probabilities can be estimated with sufficient certainty
- ▶ in the example: 0.92 and 0.00 are the degrees of uncertainty *lik_g*(0.5) of

P(X = 1 | Y = 1, Z = 1) < 0.5

in the cases with 100 and 10000 data, respectively



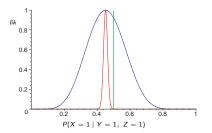
classification

- application: Bayesian network classifier in which a class is returned only when the probabilities can be estimated with sufficient certainty
- ▶ in the example: 0.92 and 0.00 are the degrees of uncertainty *lik_g*(0.5) of

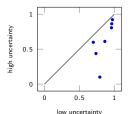
P(X = 1 | Y = 1, Z = 1) < 0.5

in the cases with 100 and 10000 data, respectively

 experimental results show that the classifier is effective in discriminating "easy" and "hard" instances



accuracy of the classification:



references

- Cattaneo (2010). Likelihood-based inference for probabilistic graphical models: Some preliminary results. In: PGM 2010, Proceedings of the Fifth European Workshop on Probabilistic Graphical Models, HIIT Publications, pp. 57–64.
- Antonucci, Cattaneo, and Corani (2011). Likelihood-based naive credal classifier. In: ISIPTA '11, Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, SIPTA, pp. 21–30.
- Antonucci, Cattaneo, and Corani (2012). Likelihood-based robust classification with Bayesian networks. In: Advances in Computational Intelligence, Part 3, Springer, pp. 491–500.