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example

X ,Y ,Z ∈ {0, 1}

data: X Y Z #

0 0 0 15
0 0 1 25
0 1 0 7
0 1 1 5
1 0 0 6
1 0 1 35
1 1 0 3
1 1 1 4

100

X

�� ��
Y Z

inference about P(X = 1 |Y = 1, Z = 1):

I ML estimate: 0.45

I Bayesian estimate
with uniform priors: 0.46

I profile likelihood function:

lik
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example × 100

X ,Y ,Z ∈ {0, 1}
data: X Y Z #

0 0 0 1500
0 0 1 2500
0 1 0 700
0 1 1 500
1 0 0 600
1 0 1 3500
1 1 0 300
1 1 1 400

10000

X

�� ��
Y Z

inference about P(X = 1 |Y = 1, Z = 1):

I ML estimate: 0.45

I Bayesian estimate
with uniform priors: 0.46−0.01

I profile likelihood function:
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profile likelihood

I probabilistic model: {Pθ : θ ∈ Θ}

I likelihood function: lik : Θ → R≥0 with lik(θ) ∝ Pθ(data)

I quantity of interest: g(θ) with g : Θ → R

I in the example: g(θ) = Pθ(X = 1 |Y = 1, Z = 1)

I profile likelihood function: likg : R → R≥0 with

likg (x) = sup
θ∈Θ : g(θ)=x

lik(θ)
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basic idea

I let f : g(Θ) → R>0 be a strictly increasing function, and define
g ′ = f ◦ g : Θ → R>0

I in the example: f (x) = x
1−x , so that g ′(θ) = P(X=1,Y=1, Z=1)

P(X=0,Y=1, Z=1)

I for some α ∈ R, if θα maximizes the modified likelihood function
lik ′ : Θ → R≥0 with

lik ′(θ) = lik(θ) g ′(θ)α

I then the point (g(θα), lik(θα)) lies on the graph of likg , since

lik(θα) = max
θ∈Θ : g(θ)=g(θα)

lik(θ) = likg (g(θα))
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parametric representation

I in particular (if well-defined), θ0 = θ̂ML, and α 7→ g(θα) is strictly
increasing

I under regularity conditions, for some interval I ⊆ R,

{(g(θα), lik(θα)) : α ∈ I}

is a parametric representation of the graph of likg

I in the example: I = [−7, 12]
lik

(
g(θ0), lik(θ0)

)

(
g(θ−2), lik(θ−2)

)

(
g(θ4), lik(θ4)

)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
P(X = 1 | Y = 1, Z = 1)

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



parametric representation

I in particular (if well-defined), θ0 = θ̂ML, and α 7→ g(θα) is strictly
increasing

I under regularity conditions, for some interval I ⊆ R,

{(g(θα), lik(θα)) : α ∈ I}

is a parametric representation of the graph of likg

I in the example: I = [−7, 12]
lik

(
g(θ0), lik(θ0)

)

(
g(θ−2), lik(θ−2)

)

(
g(θ4), lik(θ4)

)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
P(X = 1 | Y = 1, Z = 1)

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



parametric representation

I in particular (if well-defined), θ0 = θ̂ML, and α 7→ g(θα) is strictly
increasing

I under regularity conditions, for some interval I ⊆ R,

{(g(θα), lik(θα)) : α ∈ I}

is a parametric representation of the graph of likg

I in the example: I = [−7, 12]
lik

(
g(θ0), lik(θ0)

)

(
g(θ−2), lik(θ−2)

)

(
g(θ4), lik(θ4)

)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
P(X = 1 | Y = 1, Z = 1)

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



simplest case

I in a Bayesian network with categorical variables and known graph, if the
dataset is (almost) complete, then the likelihood function factorizes:

lik(θ) =
m∏
i=1

ki∏
j=1

θ
ni,j
i,j , where

ki∑
j=1

θi,j = 1 for all i

I if (the f -transform of) the quantity of interest factorizes as well:

g ′(θ) =
m∏
i=1

ki∏
j=1

θ
qi,j
i,j with qi,j ∈ R

I in the example: qi,j ∈ {−1, 0, 1}
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simplest case

I then the modified likelihood function

lik ′(θ) = lik(θ) g ′(θ)α =
m∏
i=1

ki∏
j=1

θ
ni,j+α qi,j
i,j

can be seen as a likelihood function with modified data, and is
maximized by the corresponding “relative frequencies”

(θα)i,j =
ni,j + α qi,j∑ki

j′=1(ni,j′ + α qi,j′)

I parametric representation of the graph of likg :

{(g(θα), lik(θα)) : α ∈ I} ,

where I = {α ∈ R : ni,j + α qi,j ≥ 0 for all i , j}

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



simplest case

I then the modified likelihood function

lik ′(θ) = lik(θ) g ′(θ)α =
m∏
i=1

ki∏
j=1

θ
ni,j+α qi,j
i,j

can be seen as a likelihood function with modified data, and is
maximized by the corresponding “relative frequencies”

(θα)i,j =
ni,j + α qi,j∑ki

j′=1(ni,j′ + α qi,j′)

I parametric representation of the graph of likg :

{(g(θα), lik(θα)) : α ∈ I} ,

where I = {α ∈ R : ni,j + α qi,j ≥ 0 for all i , j}

Marco Cattaneo @ LMU Munich Profile Likelihood Inference in Graphical Models



classification
I application: Bayesian network classifier in which a class is returned only

when the probabilities can be estimated with sufficient certainty

I in the example: 0.92 and 0.00 are the
degrees of uncertainty likg (0.5) of

P(X = 1 |Y = 1, Z = 1) < 0.5

in the cases with 100 and 10000 data,
respectively

lik
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I experimental results show that the
classifier is effective in discriminating
“easy” and “hard” instances
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