The Likelihood Approach to Statistical Decision Problems

Marco Cattaneo Department of Statistics, LMU Munich

Statistische Woche 2012, Wien, Austria 21 September 2012

▶ in statistics, *L* usually denotes:

- ▶ in statistics, *L* usually denotes:
 - likelihood function

- ▶ in statistics, *L* usually denotes:
 - likelihood function
 - Ioss function

- ▶ in statistics, *L* usually denotes:
 - likelihood function (here λ)
 - ▶ loss function (here W)

- in statistics, L usually denotes:
 - likelihood function (here λ)
 - ▶ loss function (here W)
- ▶ statistical model: $(\Omega, \mathcal{F}, P_{\theta})$ with $\theta \in \Theta$ (where Θ is a nonempty set) and random variables $X : \Omega \to \mathcal{X}$ and $X_i : \Omega \to \mathcal{X}_i$

• a statistical **decision problem** is described by a loss function

 $W: \Theta \times \mathcal{D} \rightarrow [0, +\infty[,$

► a statistical **decision problem** is described by a loss function

 $W:\Theta imes\mathcal{D} o [0,+\infty[,$

where $\ensuremath{\mathcal{D}}$ is a nonempty set

intended as unification (and generalization) of statistical inference,

> a statistical **decision problem** is described by a loss function

 $W: \Theta imes \mathcal{D} o [0, +\infty[,$

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with $\mathcal{D} = \Theta$)
 - hypothesis testing (with $\mathcal{D} = \{H_0, H_1\}$)

> a statistical **decision problem** is described by a loss function

 $W: \Theta imes \mathcal{D} o [0, +\infty[,$

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with $\mathcal{D} = \Theta$)
 - hypothesis testing (with $\mathcal{D} = \{H_0, H_1\}$)
- most successful general methods:
 - point estimation: maximum likelihood estimators
 - hypothesis testing: likelihood ratio tests

• a statistical **decision problem** is described by a loss function

 $W: \Theta imes \mathcal{D} o [0, +\infty[,$

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with $\mathcal{D} = \Theta$)
 - hypothesis testing (with $\mathcal{D} = \{H_0, H_1\}$)
- most successful general methods:
 - point estimation: maximum likelihood estimators
 - hypothesis testing: likelihood ratio tests
- these methods do not fit well in the setting of statistical decision theory: here they are unified (and generalized) in likelihood decision theory

► $\lambda_x : \Theta \to [0, 1]$ is the (relative) likelihood function given X = x, when $\sup_{\theta \in \Theta} \lambda_x(\theta) = 1$ and $\lambda_x(\theta) \propto P_{\theta}(X = x)$

► $\lambda_x : \Theta \to [0, 1]$ is the (relative) likelihood function given X = x, when $\sup_{\theta \in \Theta} \lambda_x(\theta) = 1$ and $\lambda_x(\theta) \propto P_{\theta}(X = x)$

(with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)

► $\lambda_x : \Theta \to [0,1]$ is the (relative) likelihood function given X = x, when $\sup_{\theta \in \Theta} \lambda_x(\theta) = 1$ and $\lambda_x(\theta) \propto P_{\theta}(X = x)$ (with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)

λ_x describes the relative plausibility of the possible values of θ in the light of the observation X = x, and can thus be used as a basis for post-data decision making

► $\lambda_x : \Theta \to [0, 1]$ is the (relative) likelihood function given X = x, when $\sup_{\theta \in \Theta} \lambda_x(\theta) = 1$ and $\lambda_x(\theta) \propto P_{\theta}(X = x)$ (with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)

- λ_x describes the relative plausibility of the possible values of θ in the light of the observation X = x, and can thus be used as a basis for post-data decision making
- ▶ prior information can be described by a prior likelihood function: if X_1 and X_2 are independent, then $\lambda_{(x_1,x_2)} \propto \lambda_{x_1} \lambda_{x_2}$; that is, when $X_2 = x_2$ is observed, the prior λ_{x_1} is updated to the posterior $\lambda_{(x_1,x_2)}$

► $\lambda_x : \Theta \to [0, 1]$ is the (relative) likelihood function given X = x, when $\sup_{\theta \in \Theta} \lambda_x(\theta) = 1$ and $\lambda_x(\theta) \propto P_{\theta}(X = x)$ (with $\lambda_x(\theta) \propto f_{\theta}(x)$ as approximation for continuous X)

- λ_x describes the relative plausibility of the possible values of θ in the light of the observation X = x, and can thus be used as a basis for post-data decision making
- Prior information can be described by a prior likelihood function: if X₁ and X₂ are independent, then λ_(x1,x2) ∝ λ_{x1} λ_{x2}; that is, when X₂ = x₂ is observed, the prior λ_{x1} is updated to the posterior λ_(x1,x2)
- ▶ strong similarity with the Bayesian approach (both satisfy the likelihood principle): a fundamental advantage of the likelihood approach is the possibility of not using prior information (since $\lambda_{x_1} \equiv 1$ describes complete ignorance)

► likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$,

▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \to [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$

▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \to [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$

• monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$

- ▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \to [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$
 - ► monotonicity: w ≤ w' (pointwise) ⇒ V(w, λ) ≤ V(w', λ) (implied by meaning of W)

- ▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \to [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$
 - monotonicity: $w \le w'$ (pointwise) $\Rightarrow V(w, \lambda) \le V(w', \lambda)$ (implied by meaning of W)
 - ▶ parametrization invariance: $b : \Theta \to \Theta$ bijection $\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda)$

- ▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \rightarrow [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \rightarrow [0, 1]$
 - ► monotonicity: w ≤ w' (pointwise) ⇒ V(w, λ) ≤ V(w', λ) (implied by meaning of W)
 - ▶ parametrization invariance: $b : \Theta \to \Theta$ bijection $\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \frac{\int w \lambda d\mu}{\int \lambda d\mu}$ for infinite Θ)

- ▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \rightarrow [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \rightarrow [0, 1]$
 - ► monotonicity: w ≤ w' (pointwise) ⇒ V(w, λ) ≤ V(w', λ) (implied by meaning of W)
 - ▶ parametrization invariance: $b : \Theta \to \Theta$ bijection $\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \frac{\int w \lambda d\mu}{\int \lambda d\mu}$ for infinite Θ)
 - ► consistency: $\mathcal{H} \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus \mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow$ $\lim_{n \to \infty} V(c \ I_{\mathcal{H}} + c' \ I_{\Theta \setminus \mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$

- ▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \rightarrow [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \rightarrow [0, 1]$
 - ► monotonicity: w ≤ w' (pointwise) ⇒ V(w, λ) ≤ V(w', λ) (implied by meaning of W)
 - ▶ parametrization invariance: $b : \Theta \to \Theta$ bijection $\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \frac{\int w \lambda d\mu}{\int \lambda d\mu}$ for infinite Θ)
 - ► consistency: $\mathcal{H} \subseteq \Theta$ with $\lim_{n\to\infty} \sup_{\theta\in\Theta\setminus\mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow$ $\lim_{n\to\infty} V(c I_{\mathcal{H}} + c' I_{\Theta\setminus\mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$ (excludes minimax criterion $V(w, \lambda) = \sup_{\theta\in\Theta} w(\theta)$, implies calibration: $V(c, \lambda) = c$)

- ▶ likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \rightarrow [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \rightarrow [0, 1]$
 - ► monotonicity: w ≤ w' (pointwise) ⇒ V(w, λ) ≤ V(w', λ) (implied by meaning of W)
 - ▶ parametrization invariance: $b : \Theta \to \Theta$ bijection $\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \frac{\int w \lambda d\mu}{\int \lambda d\mu}$ for infinite Θ)
 - ► consistency: $\mathcal{H} \subseteq \Theta$ with $\lim_{n\to\infty} \sup_{\theta\in\Theta\setminus\mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow$ $\lim_{n\to\infty} V(c I_{\mathcal{H}} + c' I_{\Theta\setminus\mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$ (excludes minimax criterion $V(w, \lambda) = \sup_{\theta\in\Theta} w(\theta)$, implies calibration: $V(c, \lambda) = c$)
- ▶ likelihood decision function: $\delta : \mathcal{X} \to \mathcal{D}$ such that $\delta(x)$ minimizes $V(W(\cdot, d), \lambda_x)$

- likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations

- independence from choice of possible alternative observations
- direct interpretation

- independence from choice of possible alternative observations
- direct interpretation
- simpler problems

- independence from choice of possible alternative observations
- direct interpretation
- simpler problems
- likelihood decision criteria have also important pre-data properties:

- independence from choice of possible alternative observations
- direct interpretation
- simpler problems
- likelihood decision criteria have also important pre-data properties:
 - equivariance: for invariant decision problems, the likelihood decision functions are equivariant

likelihood decision criteria have the advantages of post-data methods:

- independence from choice of possible alternative observations
- direct interpretation
- simpler problems

likelihood decision criteria have also important pre-data properties:

- equivariance: for invariant decision problems, the likelihood decision functions are equivariant
- (strong) consistency: under some regularity conditions, the likelihood decision functions $\delta_n : \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \mathcal{D}$ satisfy

$$\lim_{n\to\infty} W(\theta, \delta_n(X_1, \ldots, X_n)) = \inf_{d\in\mathcal{D}} W(\theta, d) \quad P_{\theta}\text{-a.s.}$$

• MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$,

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

 $V(w,\lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

(nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

► MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$\mathcal{V}(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

(nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

point estimation:

► MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$\mathcal{W}(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\mathcal{D} = \Theta$ finite

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\blacktriangleright \ \mathcal{D} = \Theta \ \text{finite}$
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:

▶ MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:

•
$$\mathcal{D} = \{H_0, H_1\}$$
 with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$

• MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:
 - $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$
 - $W(\theta, H_1) = c I_{\theta \in \mathcal{H}}$ and $W(\theta, H_0) = c' I_{\theta \in \Theta \setminus \mathcal{H}}$ with $c \ge c'$

• MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w,\lambda) = \sup_{ heta \in \Theta} w(heta) \, \lambda(heta)$$

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
- hypothesis testing:
 - $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$
 - $\blacktriangleright \ W(\theta,H_1)=c \ I_{\theta\in \mathcal{H}} \ \text{ and } \ W(\theta,H_0)=c' \ I_{\theta\in \Theta\setminus \mathcal{H}} \ \text{ with } \ c\geq c'$
 - ▶ the likelihood ratio test with critical value c'/c is the likelihood decision function resulting from the MPL criterion

- $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
- estimation of θ with squared error:

• $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

• estimation of θ with squared error:

•
$$\mathcal{D} = \Theta$$
 with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$

• $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

• estimation of θ with squared error:

•
$$\mathcal{D} = \Theta$$
 with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$

 no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:
 - ▶ scale invariance and sufficiency: $\hat{\theta}(x_1, ..., x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}})^{\sigma}/\sqrt{n}$

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \dots, x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \sigma/\sqrt{n}$
 - consistency and asymptotic efficiency: $\hat{\theta}(x_1, \dots, x_n) = \bar{x}$ when $\bar{x} \ge \sqrt{2}\sigma/\sqrt{n}$

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \dots, x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \sigma/\sqrt{n}$
 - consistency and asymptotic efficiency: $\hat{\theta}(x_1, \dots, x_n) = \bar{x}$ when $\bar{x} \ge \sqrt{2}\sigma/\sqrt{n}$



Marco Cattaneo @ LMU Munich The Likelihood Approach to Statistical Decision Problems

• $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

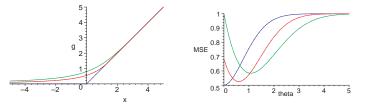
• estimation of θ with squared error:

•
$$\mathcal{D} = \Theta$$
 with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$

 no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

likelihood decision function resulting from the MPL criterion:

- ► scale invariance and sufficiency: $\hat{\theta}(x_1, ..., x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}}) \sigma/\sqrt{n}$
- consistency and asymptotic efficiency: $\hat{\theta}(x_1, \dots, x_n) = \bar{x}$ when $\bar{x} \ge \sqrt{2}\sigma/\sqrt{n}$



Marco Cattaneo @ LMU Munich The Likelihood Approach to Statistical Decision Problems

this work:

fills a gap in the likelihood approach to statistics

this work:

- fills a gap in the likelihood approach to statistics
- introduces an alternative to classical and Bayesian decision making

this work:

- fills a gap in the likelihood approach to statistics
- introduces an alternative to classical and Bayesian decision making
- offers a new perspective on the likelihood methods

this work:

- fills a gap in the likelihood approach to statistics
- introduces an alternative to classical and Bayesian decision making
- offers a new perspective on the likelihood methods

likelihood decision making:

is post-data and equivariant

this work:

- fills a gap in the likelihood approach to statistics
- introduces an alternative to classical and Bayesian decision making
- offers a new perspective on the likelihood methods

likelihood decision making:

- is post-data and equivariant
- is consistent and asymptotically efficient

this work:

- fills a gap in the likelihood approach to statistics
- introduces an alternative to classical and Bayesian decision making
- offers a new perspective on the likelihood methods

likelihood decision making:

- is post-data and equivariant
- is consistent and asymptotically efficient
- does not need prior information

references

- Cattaneo (2007). Statistical Decisions Based Directly on the Likelihood Function. *PhD thesis*, ETH Zurich.
- Cattaneo (2012). Likelihood decision functions. Technical Report 128, Department of Statistics, LMU Munich.
- Diehl and Sprott (1965). Die Likelihoodfunktion und ihre Verwendung beim statistischen Schluß. Statistische Hefte 6, 112–134.
- Lehmann (1959). **Testing Statistical Hypotheses**. Wiley.