
Linear regression with interval data:
the LIR approach

Andrea Wiencierz and Marco E. G. V. Cattaneo
Department of Statistics, LMU Munich

Statistische Woche, Vienna, Austria
September 20, 2012

A. Wiencierz and M. Cattaneo (LMU Munich) linLIR Sep. 20, 2012 1 / 16



Likelihood-based Imprecise Regression (LIR)

� (X1,Y1), . . . , (Xn,Yn)

with (Xi ,Yi )
i.i.d.∼ P

� simple linear regression:

Y = f (X ) = a + b X
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(Simple) linear LIR with interval data

� (X ∗1 ,Y
∗
1 ), . . . , (X ∗n ,Y

∗
n )

where X ∗i =
[
X i ,X i

]
and Y ∗i =

[
Y i ,Y i

]

� with V ∗i = X ∗i × Y ∗i
((Xi ,Yi ),V

∗
i )

i.i.d.∼ P

such that for ε ∈ [0, 1]

P((Xi ,Yi ) /∈ V ∗i ) ≤ ε
� simple linear regression:

Y = f (X ) = a + b X

� p-quantile QRf ,p, with
p ∈ (0, 1), of the
distribution of the
residuals

Rf ,i = |Yi − f (Xi )|
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(Simple) linear LIR with interval data

� imprecise residuals:

r f ,i = min
(x,y)∈v∗i

|y − f (x)|

r f ,i = sup
(x,y)∈v∗i

|y − f (x)|

� uncertainty about f :

data imprecision and
statistical uncertainty

� consider Cf ,p,β,ε:
likelihood-based
confidence region for
QRf ,p with cutoff point
β ∈ (0, 1)
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|y − f (x)|

� uncertainty about f :

data imprecision and
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� result U : set of all
plausible functions
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Recapitulation: (simple) linear LIR with interval data

� ((Xi ,Yi ),V
∗
i )

i.i.d.∼ P , P ∈ Pε = {P : P((Xi ,Yi ) /∈ V ∗i ) ≤ ε} , ε ∈ [0, 1]

� Yi = f (Xi ) , f ∈ F =

{
fa,b :

R → R
X 7→ a + b X

, a, b ∈ R
}

� observations v∗1 , . . . , v
∗
n induce (normalized) profile likelihood function likQRf

of the p-quantile of the distribution of Rf for each f ∈ F
� likQRf

is a stepwise constant function with points of discontinuity at:

0 = r f ,(0), . . . , r f ,(dn(p−ε)e), r f ,(bn(p+ε)c+1), . . . , r f ,(n+1) = +∞

� Cf = [r f ,(k+1), r f ,(k)] , values of k , k ∈ N ∪ {0} depend on n, p, β, ε

� LIR result U = {f ∈ F : r f ,(k+1) ≤ qLRM} , where qLRM = inf
f∈F

r f ,(k)

� if there is a unique f with r f ,(k) = qLRM , it is optimal according to the LRM
criterion and called fLRM ; LRM means Likelihood-based Region Minimax

� further details in: M. Cattaneo, A. Wiencierz (2012). Likelihood-based
Imprecise Regression. Int. J. Approx. Reasoning 53. 1137-1154.
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of the p-quantile of the distribution of Rf for each f ∈ F
� likQRf

is a stepwise constant function with points of discontinuity at:

0 = r f ,(0), . . . , r f ,(dn(p−ε)e), r f ,(bn(p+ε)c+1), . . . , r f ,(n+1) = +∞

� Cf = [r f ,(k+1), r f ,(k)] , values of k , k ∈ N ∪ {0} depend on n, p, β, ε

� LIR result U = {f ∈ F : r f ,(k+1) ≤ qLRM} , where qLRM = inf
f∈F

r f ,(k)

� if there is a unique f with r f ,(k) = qLRM , it is optimal according to the LRM
criterion and called fLRM ; LRM means Likelihood-based Region Minimax

� further details in: M. Cattaneo, A. Wiencierz (2012). Likelihood-based
Imprecise Regression. Int. J. Approx. Reasoning 53. 1137-1154.
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Statistical properties of the LIR method

� the presented method for linear LIR generalizes Least Quantile of Squares
(LQS) regression to imprecise data and to accounting directly for statistical
uncertainty

� very robust due to nonparametric probability model and quantiles,

breakdown-point ε∗ = min{k,n−k}
n

n→∞−→ min{p, 1− p} − ε

� exact confidence level of Cf :

inf
P∈Pε

P(Cf 3 QRf
) =



k∑
k=k+1

(
n
k

)
pk (1− p)n−k ε = 0

k∑
k=k+1

(
n
k

)
(p + ε)k (1− (p + ε))n−k ε > 0, p ≤ 0.5

k∑
k=k+1

(
n
k

)
(p − ε)k (1− (p − ε))n−k ε > 0, p > 0.5
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Implementation: Exact algorithm for simple linear LIR

� aim: determine the set
of undominated
functions U = {f ∈ F :
r f ,(k+1) ≤ qLRM}

� 1st step: find qLRM

� B fLRM ,qLRM
(blue dashed

lines) is the thinnest
band containing at least
k imprecise data

� here β = 0.8, p = 0.6,
n = 17 , and k = 12
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Implementation: Exact algorithm - Part 1

� some of the included k
imprecise data touch
the border of B fLRM ,qLRM

in 3 different points

� bLRM can be any slope
determined by the
corresponding corner
points of 2 imprecise
data or 0

� B: set of all 4
(
n
2

)
+ 1

possible values for bLRM

� for each b ∈ B find
ab ∈ R for which
r fab,b,(k)

is minimal

� qLRM = min
b∈B

r fab,b
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Implementation: Exact algorithm - Part 2

� step 2: determine U

� if f ∈ U , then B f ,qLRM

intersects at least k + 1
imprecise data

� here k = 8

� for each b ∈ R find the
of intercept values
a ∈ R, for which
r fa,b,(k+1) ≤ qLRM

� U can also be
represented by the
corresponding subset of
the parameter space
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Set of undominated parameters
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Implementation of the algorithm in R

Recapitulation: Exact algorithm for simple linear LIR with interval data

� the 1st part of the algorithm generalizes the exact algorithm for LQS
regression

� the presented algorithm has computational complexity O(n3 log n)

� further details in: M. Cattaneo, A. Wiencierz (2012). On the implementation
of LIR: the case of simple linear regression with interval data. Technical
Report 127. Department of Statistics. LMU Munich.

linLIR package

� linLIR: linear Likelihood-based Imprecise Regression, available at CRAN:
http://cran.r-project.org/

� function to plot 2-dimensional interval data set

� s.linlir function implements the exact algorithm

� further tools to summarize and visualize results

A. Wiencierz and M. Cattaneo (LMU Munich) linLIR Sep. 20, 2012 12 / 16
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276

� obtained set of
undominated functions
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Example

� 2-dimensional interval
data set of n = 514
observations

� LIR analysis with p =
0.5, β = 0.26, ε = 0

� k = 238 , k = 276

� obtained set of
undominated functions

� obtained set of
parameters
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Summary and Outlook

� the LIR approach provides a very robust regression method for imprecisely
observed variables

� the imprecise result of the LIR analysis is the set of all functions that are
plausible relations of X and Y in the light of the imprecise observations

� for the special case of simple linear regression with interval data, we
developed an exact algorithm to determine the set of all undominated
functions

� the exact algorithm is implemented in R as part of the linLIR package

� current / future work:

� further investigate statistical properties, in particular the confidence level of U
� generalize algorithm to multiple linear regression
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