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coarse data

unobserved precise data observed coarse data

I in the literature, two kinds of general approaches to regression with
coarse data:

I represent the observed coarse data by few precise values (e.g., intervals by
center and width), and apply standard regression methods to those values:
see for instance Domingues et al. (2010)

I apply standard regression methods to all possible precise data compatible
with the observed coarse data, and consider the range of outcomes as the
imprecise result: see for example Ferson et al. (2007)

I LIR (Likelihood-based Imprecise Regression): new regression method
directly applicable to coarse data (Cattaneo and Wiencierz, 2011)
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nonparametric likelihood

I precise data (unobserved): random variables Vi = (Xi ,Yi ) ∈ X × R

I coarse data (observed): random sets V ∗
i ⊆ X × R

I nonparametric model: P is the set of all probability measures such that

I (V1,V
∗
1 ), . . . , (Vn,V

∗
n ) i.i.d.

I P(Vi ∈ V ∗
i ) ≥ 1− ε (where ε ∈ [0, 1] is fixed)

I the observed (coarse) data V ∗
1 = A1, . . . ,V

∗
n = An induce the

(normalized) likelihood function lik : P → [0, 1] with

lik(P) =
P(V ∗

1 = A1, . . . ,V
∗
n = An)

maxP′∈P P ′(V ∗
1 = A1, . . . ,V ∗

n = An)
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regression problem

I regression functions: F is a certain set of functions f : X → R

I absolute residuals: Rf ,i = |Yi − f (Xi )|

I for each function f ∈ F , the quantiles of the distribution of the absolute
residuals Rf ,i can be estimated even under the nonparametric model P

I the regression problem can be interpreted as the minimization of the
p-quantile of the distribution of the absolute residuals Rf ,i (where
p ∈ (0, 1) is fixed)
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generalized LQS regression

I likelihood-based confidence interval for the p-quantile of the distribution
of the absolute residuals Rf ,i (where Qf (P) is the interval of all
p-quantiles of Rf ,i under P, and β ∈ (0, 1) is fixed):

Cf =
⋃

P∈P : lik(P)>β

Qf (P)

I point estimate: fLRM is the function in F minimizing sup Cf
(Likelihood-based Region Minimax: see Cattaneo, 2007)

I fLRM has a simple geometrical interpretation: B fLRM ,qLRM
is the thinnest

band of the form B f ,q = {(x , y) ∈ X × R : |y − f (x)| ≤ q} containing at
least k coarse data (where k > (p + ε) n depends on n, ε, p, β), for all
f ∈ F and all q ∈ [0,+∞)

I when the observed data are in fact precise, fLRM corresponds to the LQS

(Least Quantile of Squares) estimate with quantile k
n

I in the case of linear regression with interval data, fLRM can be computed
by generalizing the algorithm of Rousseeuw and Leroy (1987)
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nonparametric LIR

I interval dominance: interval I (strictly) dominates interval J iff x < y for
all x ∈ I and all y ∈ J

I imprecise regression: set of all undominated functions (that is, all f ∈ F
such that qLRM ∈ Cf )

I the undominated functions have a simple geometrical interpretation: f is
undominated iff B f ,qLRM

intersects at least k + 1 coarse data (where
k < (p − ε) n depends on n, ε, p, β)

I complex uncertainty, consisting of two kinds of uncertainty:

I sample uncertainty: decreases when n increases (reflected by the spread

between k+1
n

and k
n
)

I coarseness uncertainty: unavoidable under such weak assumptions
(reflected by the difference between containing and intersecting coarse
data)
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example with social survey data

I data from the “ALLBUS — German General Social Survey” of 2008
(provided by GESIS — Leibniz Institute for the Social Sciences)

I relationship between age Xi ∈ X = [18, 100) and personal income (on
average per month) Yi ∈ [0,+∞), with n = 3247

I choice of regression functions: F = {fa,b1,b2 : a, b1, b2 ∈ R} is the set of
all quadratic functions fa,b1,b2(x) = a+ b1 x + b2 x

2

I choice of parameters: ε = 0 (no error in the coarsening process), p = 0.5
(median), and β = 0.15 (each Cf is approximately a conservative 95%
confidence interval), implying k = 1568 and k = 1679

I in 4 different data situations, fLRM (violet solid line, with B fLRM ,qLRM

represented by the violet dashed lines) and the undominated functions
(gray dotted curves) are compared with the results of the ordinary least
squares regression applied after reducing the interval data to their centers
and choosing 15 000 (blue curve) or 10 000 (green curve) as the upper
income limit
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original data

I age data: 3236 “precise” (in years: 83 classes), 11 missing

I income data: 2266 precise, 361 categorized (22 classes), 620 missing
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categorized income data

I age data: 3236 “precise” (in years: 83 classes), 11 missing

I income data: 2627 categorized (22 classes), 620 missing
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categorized age data

I age data: 3236 categorized (6 classes), 11 missing

I income data: 2266 precise, 361 categorized (22 classes), 620 missing
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categorized age and income data

I age data: 3236 categorized (6 classes), 11 missing

I income data: 2627 categorized (22 classes), 620 missing
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conclusion and outlook
I LIR: new line of approach to regression with coarse data

I LIR is directly applicable to any kind of coarse data (with precise data as
a special case), where the coarsening process can be informative (and
even wrong with a certain probability)

I the result of the regression is imprecise, reflecting the total uncertainty in
the data

I nonparametric LIR: extremely weak assumptions, leading to very robust
results (generalized LQS regression)

I future work:

I improve the implementation of LIR
I study in more detail the statistical properties of the method (e.g., the

coverage probability of the imprecise result), even though the repeated
sampling evaluation is problematic with coarse data

I investigate the consequences of stronger assumptions (e.g., the existence
of a true regression function with an additive, homoscedastic, normal error)

I consider the minimization of other properties of the distribution of the
absolute residuals (besides the quantiles), in order to increase the
efficiency of the method (e.g., generalized LTS regression)
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