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Let P be a set of statistical models:

• P is a set of probability measures on a measurable space (Ω,A);

• no structure is imposed on P.

The observation of an event A ∈ A gives us some information about the
models in P. We want to use this information to infer something about the
models in P or to evaluate possible decisions.



Likelihood Function

The likelihood function lik : P → [0, 1] based on the observation A ∈ A:

• is defined by lik(P ) = P (A) ;

• measures the relative plausibility of the models P ∈ P, on the basis of
the observation A alone;

• is not calibrated: only ratios lik(P )/lik(P ′) are well determined in a
statistical sense.
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The likelihood function lik : P → [0, 1] based on the observation A ∈ A:

• is defined by lik(P ) = P (A) ;

• measures the relative plausibility of the models P ∈ P, on the basis of
the observation A alone;

• is not calibrated: only ratios lik(P )/lik(P ′) are well determined in a
statistical sense.

Likelihood-based inference methods:

• maximum likelihood estimator P̂ML = arg max lik ;

• tests and confidence regions based on the likelihood ratio statistic

LR(H) =
sup IH lik

sup lik
for H ⊆ P.
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Let X1, X2, . . . be independent random variables with distribution Ber(θ)
under the model Pθ, and let P = {Pθ : 0 ≤ θ ≤ 1} ' [0, 1].
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Example: iid Bernoulli

Let X1, X2, . . . be independent random variables with distribution Ber(θ)
under the model Pθ, and let P = {Pθ : 0 ≤ θ ≤ 1} ' [0, 1].

A5 = {X1 = 1, X2 = 0, X3 = 1, X4 = 1, X5 = 0} = 〈10110〉
lik(θ) ∝ θ3 (1− θ)2

θ̂ML = 3
5 = 0.6

LR([0, 1
2]) ≈ 0.904

0.60.4 0.80.20 1
θ

A20 = 〈10110111101111110111〉
lik(θ) ∝ θ16 (1− θ)4

θ̂ML = 16
20 = 0.8

LR([0, 1
2]) ≈ 0.021

0.60.4 10.20 0.8
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Likelihood-Based Statistical Inference

The likelihood-based inference methods:

• are asymptotic optimal (if some regularity conditions are satisfied);

• are general and simple (and therefore widely applicable);

• are intuitive (in particular conditional and parametrization invariant);

• are supported by experience.



Statistical Decision Problem

A statistical decision problem is described by a loss function

L : P ×D → [0,∞) :

• D is the set of possible decisions, and P is the set of considered statistical
models;

• L(P, d) is the loss we would incur, according to the model P , by making
the decision d;

• the decision d is evaluated on the sole basis of Ld : P 7→ L(P, d).
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A statistical decision problem is described by a loss function

L : P ×D → [0,∞) :

• D is the set of possible decisions, and P is the set of considered statistical
models;

• L(P, d) is the loss we would incur, according to the model P , by making
the decision d;

• the decision d is evaluated on the sole basis of Ld : P 7→ L(P, d).

Inference can be seen as a special case of decision, for example:

• the estimation of P can be described by D = P and L a metric on P;

• a test of H0 ⊂ P against the alternative H1 = P \ H0 can be described
by D = {r, nr}, Lr = IH0 and Lnr = c IH1, with c ≤ 1.



Pre-Data Evaluation

Let X : Ω → X be a random object with A = {X = xA}.

A decision function δ : X → D is evaluated on the sole basis of the
(pre-data) expected loss Rδ : P 7→ EP [L(P, δ(X))].
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Let X : Ω → X be a random object with A = {X = xA}.

A decision function δ : X → D is evaluated on the sole basis of the
(pre-data) expected loss Rδ : P 7→ EP [L(P, δ(X))].

To select a decision function δ, adopt a decision criterion, for example the

minimax criterion: minimize supRδ .

To obtain the decision, apply the selected decision function δ to the observed
realization xA of X.



Post-Data (Conditional) Evaluation

The likelihood-based inference methods are conditional:

• they depend only on the observation A = {X = xA}, not on the other
possible realizations of X;

• they select a decision d ∈ D, not a decision function δ : X → D.



Post-Data (Conditional) Evaluation

The likelihood-based inference methods are conditional:

• they depend only on the observation A = {X = xA}, not on the other
possible realizations of X;

• they select a decision d ∈ D, not a decision function δ : X → D.

Since inference can be seen as a special case of decision, we can try
to generalize the likelihood-based inference methods to a likelihood-based
(conditional) decision criterion.



MPL Decision Criterion

The post-data evaluation of a decision d can only be based on Ld and lik.

A straightforward way to obtain a conditional decision criterion is to
associate to every decision d ∈ D a nonnegative extended real number
F (Ld, lik) (an evaluation of Ld on the basis of lik) and to select d by
minimizing F (Ld, lik).
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MPL Decision Criterion

The post-data evaluation of a decision d can only be based on Ld and lik.

A straightforward way to obtain a conditional decision criterion is to
associate to every decision d ∈ D a nonnegative extended real number
F (Ld, lik) (an evaluation of Ld on the basis of lik) and to select d by
minimizing F (Ld, lik).

For example, by defining FMPL(Ld, lik) = sup lik Ld, we obtain the

MPL criterion: minimize sup lik Ld .

If lik is constant (i.e. we have no information about the models in P),
the MPL criterion reduces to: minimize supLd (conditional minimax
criterion).

But if lik is not constant, it is used as a weighting of Ld (MPL means
Minimax Plausibility-weighted Loss).
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Example: iid Bernoulli

A5 = 〈10110〉
lik(θ) ∝ θ3 (1− θ)2

0.60.4 0.80.20 1
θEstimation of θ ∈ [0, 1]:

(likelihood-based inference: θ̂ML = 0.6)

L(θ, d) =
{

0 if |θ − d| < ε
1 if |θ − d| ≥ ε

⇒ |θ̂ML − dMPL| < ε

L(θ, d) = |θ − d| ⇒ dMPL ≈ 0.588

L(θ, d) =
{

5 |d− θ| if d ≤ θ
|d− θ| if d ≥ θ

⇒ dMPL ≈ 0.736

Test of H0 against H1:

(likelihood-based inference: reject H0 if LR(H0) is sufficiently small)

Lr = IH0 and Lnr = c IH1 ⇒ (dMPL = r ⇔ LR(H0) < c)
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Likelihood-Based Decision Functions

• sample space (Ω,A) (measurable space)

• set P of considered statistical models (probability measures on (Ω,A))

• set D of possible decisions

• loss function L : P ×D → [0,∞)

If A ∈ A is observed, define lik : P 7→ P (A) and select the decision dmF

minimizing F (L(·, d), lik).

If X : Ω → X is a random object, we can select a decision dmF for every
possible realization x of X (by setting A = {X = x}), obtaining a decision
function δmF : X → D.

δmF can be compared with other decision functions δ on the basis of the
pre-data expected loss Rδ : P 7→ EP [L(P, δ(X))].
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Estimation of the variance components in the 3× 3 random effect one-way
layout, under normality assumptions and weighted squared error loss.

Xij = µ + αi + εij ∀ i, j ∈ {1, 2, 3}



Example: Mixed Effects Models

Estimation of the variance components in the 3× 3 random effect one-way
layout, under normality assumptions and weighted squared error loss.

Xij = µ + αi + εij ∀ i, j ∈ {1, 2, 3}

Normality assumptions:

αi ∼ N (0, va), εij ∼ N (0, ve), all independent

⇒ Xij ∼ N (µ, va + ve) dependent, µ ∈ (−∞,∞), va, ve ∈ (0,∞)



Example: Mixed Effects Models

The estimates v̂e and v̂a of the variance components ve and va are functions
of

SSe =
3∑

i=1

3∑
j=1

(xij − x̄i·)2 and SSa = 3
3∑

i=1

(x̄i· − x̄··)2 ,

where

x̄i· =
1
3

3∑
j=1

xij , x̄·· =
1
9

3∑
i=1

3∑
j=1

xij ,

SSe

ve
∼ χ2

6 and
1
3 SSa

va + 1
3 ve

∼ χ2
2 .
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The estimates v̂e and v̂a of the variance components ve and va are functions
of

SSe =
3∑

i=1

3∑
j=1

(xij − x̄i·)2 and SSa = 3
3∑

i=1

(x̄i· − x̄··)2 ,

where

x̄i· =
1
3

3∑
j=1

xij , x̄·· =
1
9

3∑
i=1

3∑
j=1

xij ,

SSe

ve
∼ χ2

6 and
1
3 SSa

va + 1
3 ve

∼ χ2
2 .

The considered loss functions are

3
(v̂e − ve)2

ve
2

and
(v̂a − va)2

(va + 1
3 ve)2

.



Example: Mixed Effects Models
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Example: Mixed Effects Models

3
E[(cve−ve)2]

ve2
E[(cva−va)2]

(va+1
3 ve)2
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1
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0.7
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MPL                     

ANOVA = ANOVA+ = MINQU  

ML                      

ReML                    

1.6
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0
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Va/(Va+Ve)
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MPL                     

ANOVA                   

ML                      

ReML = ANOVA+           

nonneg. MINQ min. bias  
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Conditional Decision Criteria

Necessary properties of F (Ld, lik)?

Since lik and c lik are equivalent (for c > 0), it suffices to consider
F (Ld, lik) (where lik ∝ lik and sup lik = 1).

F (Ld, lik) is an evaluation of Ld on the basis of lik.

Calibration: F (c, lik) = c

Monotonicity: Ld ≥ Ld′ ⇒ F (Ld, lik) ≥ F (Ld′, lik)

Scale Invariance: F (Ld, lik) ≥ F (Ld′, lik) ⇒ F (cLd, lik) ≥ F (cLd′, lik)

If Calibration is valid, Scale Invariance is equivalent to:

Homogeneity: F (cLd, lik) = c F (Ld, lik)



Maximum Likelihood Decision Criterion

FML(Ld, lik) = sup
lim lik(Pn)=1

lim supLd(Pn)

The conditional decision criterion based on FML generalizes the idea:
select the decision which is optimal under the model P̂ML. In particular,
in estimation problems the selected decision is the maximum likelihood
estimate (if it exists).



Maximum Likelihood Decision Criterion

FML(Ld, lik) = sup
lim lik(Pn)=1

lim supLd(Pn)

The conditional decision criterion based on FML generalizes the idea:
select the decision which is optimal under the model P̂ML. In particular,
in estimation problems the selected decision is the maximum likelihood
estimate (if it exists).

FML satisfies the 3 necessary properties Calibration, Monotonicity and
Homogeneity. The supremum in the definition of FML has been chosen in
order to satisfy:

Conditional Minimax: F (Ld, IH) = sup IHLd
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(
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To generalize the maximum likelihood estimator, f must be strictly
increasing in 1 (that is, f can not be constant on any neighborhood of 1).
To generalize the tests and confidence regions based on the likelihood ratio
statistic, f must be continuous on [0,∞) and strictly increasing on [0, 1].



Generalization of Inference Methods

In order to generalize the likelihood-based inference methods, it is necessary

that F satisfies F (IH, lik) = f

(
sup IH lik

sup IP\H lik

)
, where f : [0,∞] → [0,∞].

From Monotonicity it follows that f is increasing, and from Calibration it
follows that f(0) = 0 and f(∞) = 1.
To generalize the maximum likelihood estimator, f must be strictly
increasing in 1 (that is, f can not be constant on any neighborhood of 1).
To generalize the tests and confidence regions based on the likelihood ratio
statistic, f must be continuous on [0,∞) and strictly increasing on [0, 1].

FML(IH, lik) = fML

(
sup IH lik

sup IP\H lik

)
with fML(x) =

{
0 if x < 1
1 if x ≥ 1 .

Thus FML generalizes the maximum likelihood estimator, but it does not
generalize the tests and confidence regions based on the likelihood ratio
statistic.



Likelihood Ratio Statistic

If F (IH, lik) = LR(H) for all H ⊆ P, F generalizes the likelihood-based

inference methods, since LR(H) = sup IH lik = fLR
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Likelihood Ratio Statistic

If F (IH, lik) = LR(H) for all H ⊆ P, F generalizes the likelihood-based

inference methods, since LR(H) = sup IH lik = fLR

(
sup IH lik

sup IP\H lik

)
with

fLR(x) =
{

x if x ≤ 1
1 if x ≥ 1 .

The likelihood ratio statistic LR is a possibility measure (completely
maxitive measure) on P:

LR(P) = 1 and LR

( ⋃
j∈J

Hj

)
= sup

j∈J
LR(Hj) .



Subadditive Integrals

Monotonicity: Ld ≥ Ld′ ⇒ F (Ld, lik) ≥ F (Ld′, lik)

Homogeneity: F (cLd, lik) = c F (Ld, lik)

Indicator Property: F (IH, lik) = LR(H)

If F satisfies this 3 properties (Calibration follows from Homogeneity and
Indicator Property), it can be considered an integral with respect to the
possibility measure LR:

F (Ld, lik) =
∫

Ld dLR .



Subadditive Integrals

Monotonicity: Ld ≥ Ld′ ⇒ F (Ld, lik) ≥ F (Ld′, lik)

Homogeneity: F (cLd, lik) = c F (Ld, lik)

Indicator Property: F (IH, lik) = LR(H)

If F satisfies this 3 properties (Calibration follows from Homogeneity and
Indicator Property), it can be considered an integral with respect to the
possibility measure LR:

F (Ld, lik) =
∫

Ld dLR .

If H ∩H′ = ∅, then
∫

(IH + IH′) dLR = max{
∫

IH dLR,
∫

IH′ dLR}.
Thus the integral F can not be additive, but we can require:

Subadditivity: F (Ld + Ld′, lik) ≤ F (Ld, lik) + F (Ld′, lik)



Asymptotic Optimality

• X1, X2, . . . iid (discrete) random objects

• P and L satisfy some regularity conditions

• dn is the conditional decision based on a subadditive integral F after
having observed X1, . . . , Xn

⇒ L(P, dn) → inf L(P, ·) P -a.s, for all P ∈ P



Asymptotic Optimality

• X1, X2, . . . iid (discrete) random objects

• P and L satisfy some regularity conditions

• dn is the conditional decision based on a subadditive integral F after
having observed X1, . . . , Xn

⇒ L(P, dn) → inf L(P, ·) P -a.s, for all P ∈ P

The properties of F sufficient for this asymptotic optimality are much
weaker than those defining the subadditive integrals. In particular, FML

satisfies them.

In estimation problems with symmetric loss functions, asymptotic efficiency
can be obtained, but stronger properties are necessary.



Equivariance

An integral can be expected to satisfy
∫

(Ld ◦T ) dLR =
∫

Ld d(LR ◦T−1),
when T : P → T and Ld : T → [0,∞).

If the integral F satisfies this property, it follows in particular that the
decision function is equivariant when the decision problem is invariant
(to have equivariance it suffices that the property is valid for bijections
T : P → P ′).



Equivariance

An integral can be expected to satisfy
∫

(Ld ◦T ) dLR =
∫

Ld d(LR ◦T−1),
when T : P → T and Ld : T → [0,∞).

If the integral F satisfies this property, it follows in particular that the
decision function is equivariant when the decision problem is invariant
(to have equivariance it suffices that the property is valid for bijections
T : P → P ′).

The above transformation property is valid if and only if the integral depends
only on LR ◦ L−1

d : x 7→ LR{Ld = x}.

If in addition the integral F depends only on x 7→ LR{Ld > x}, it satisfies
also the Conditional Minimax property.



Choquet and Shilkret Integrals

A subadditive integral depending only on x 7→ LR{Ld > x} satisfies all the
properties considered. Examples are:

Choquet integral:

∫
Ld dLR =

∫ ∞

0

LR{Ld > x}dx

Shilkret integral:

∫
Ld dLR = sup

x>0
xLR{Ld > x} =

= sup lik Ld = FMPL(Ld, lik)



Choquet and Shilkret Integrals

A subadditive integral depending only on x 7→ LR{Ld > x} satisfies all the
properties considered. Examples are:

Choquet integral:

∫
Ld dLR =

∫ ∞

0

LR{Ld > x}dx

Shilkret integral:

∫
Ld dLR = sup

x>0
xLR{Ld > x} =

= sup lik Ld = FMPL(Ld, lik)

The Choquet integral has the advantage of being translation invariant:∫
(Ld + c) dLR =

∫
Ld dLR + c.

The Shilkret integral has the advantage of being simple and intuitive.



Likelihood-Based Statistical Decisions

The likelihood-based decision criteria, and in particular the MPL criterion:

• are asymptotic optimal (if some regularity conditions are satisfied);

• are general and simple (and therefore widely applicable);

• are intuitive (in particular conditional and parametrization invariant).


