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(reasoning and decision making under uncertainty)

I PhD with Frank Hampel at ETH Zurich
(November 2002 – March 2007):
Statistical Decisions Based Directly on the Likelihood Function

I complex uncertainty:
simple randomness is superposed by non-stochastic aspects of
uncertainty (model uncertainty)

I Postdoc with Thomas Augustin at LMU Munich
(SNSF Research Fellowship, October 2007 – March 2009):
Decision making on the basis of a probabilistic-possibilistic
hierarchical description of uncertain knowledge
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foundations of statistics

I besides the Bayesian and frequentist approaches to statistics, there
is also a likelihood approach (Fisher, Barnard, Edwards, . . . )

I P = {Pθ : θ ∈ Θ} set of probabilistic models:
each Pθ ∈ P is a probability measure on (Ω,A)

I when data A ∈ A are observed, the likelihood function

lik(θ) ∝ Pθ(A)

describes the relative ability of the models in P to forecast the
observed data

I the likelihood function is a central concept in statistics (both
frequentist and Bayesian)
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statistical inference

I the likelihood approach allows conditional inference without needing
precise prior information
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I likelihood-based inference methods are very successful, in particular
maximum likelihood estimates (parametric or nonparametric)
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I surprisingly, no likelihood-based decision making in the statistical
literature
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statistical decisions
I a statistical decision problem is described by a loss function

L : Θ×D → [0,∞],

L(θ, d): loss incurred by making decision d , according to model Pθ

I Bayesian decision criterion with posterior probability measure π on
Θ (obtained from lik):

minimize

∫
L(θ, d) dπ(θ)

I in the likelihood approach (in particular in the likelihood ratio test),
a nonadditive measure λ on Θ is obtained from lik:

λ(H) = sup
θ∈H

lik(θ) for all H ⊆ Θ

I likelihood-based decision criterion:

minimize

∫
L(θ, d) dλ(θ)
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likelihood-based statistical decisions

I the likelihood-based decisions share the properties of the
likelihood-based inferences, in particular:

I asymptotic optimality (consistency)

I asymptotic efficiency

I parametrization invariance

I equivariance

I a simple property (sure-thing principle) characterizes the
likelihood-based decision criterion based on the Shilkret integral: the
MPL (Minimax Plausibility-weighted Loss) decision criterion:

minimize

∫ S

L(θ, d) dλ(θ) = sup
θ∈Θ

lik(θ) L(θ, d)
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example: estimation of variance components

I estimation of the variance components in the 3× 3 random effect
one-way layout, under normality assumptions and weighted squared
error loss

Xij = µ+ αi + εij for all i , j ∈ {1, 2, 3}

I normality assumptions:

αi ∼ N (0, va), εij ∼ N (0, ve), all independent

⇒ Xij ∼ N (µ, va + ve) dependent, µ ∈ (−∞,∞), va, ve ∈ (0,∞)
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example: estimation of variance components

I estimates v̂e and v̂a of variance components ve and va are functions
of
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example: estimation of variance components
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present and future research

I comparison/combination with other approaches in various
applications

I application to robustness problems
(relaxation of i.i.d. assumption, robust likelihood)

I application to imprecise probability theory
(better updating, possibilistic previsions, convex set of
non-normalized measures)

I application to graphical models
(probabilistic and non-probabilistic aspects of uncertainty)

I application to financial risk measures
(derivation and interpretation of convex risk measures)
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