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Decision making on the basis of a probabilistic-possibilistic
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> besides the Bayesian and frequentist approaches to statistics, there
is also a likelihood approach (Fisher, Barnard, Edwards, ...)

> P ={Ps: 0 c O} set of probabilistic models:
each Py € P is a probability measure on (£, .A4)

» when data A € A are observed, the likelihood function
lik(0) o< Py(A)

describes the relative ability of the models in P to forecast the
observed data

> the likelihood function is a central concept in statistics (both
frequentist and Bayesian)
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> likelihood-based inference methods are very successful, in particular
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lik .

» surprisingly, no likelihood-based decision making in the statistical
literature
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» Bayesian decision criterion with posterior probability measure 7 on
© (obtained from lik):

minimize /L(G7 d)dn(6)

> in the likelihood approach (in particular in the likelihood ratio test),
a nonadditive measure A\ on © is obtained from lik:

AH) = 05275 lik(6) forall HC ©

» likelihood-based decision criterion:

minimize /L(G, d)d\(9)
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likelihood-based statistical decisions

» the likelihood-based decisions share the properties of the
likelihood-based inferences, in particular:
> asymptotic optimality (consistency)
> asymptotic efficiency
> parametrization invariance

> equivariance

> a simple property (sure-thing principle) characterizes the
likelihood-based decision criterion based on the Shilkret integral: the
MPL (Minimax Plausibility-weighted Loss) decision criterion:

S
minimize / L(6, d) dA(8) = sup lik(0) L(0, d)
[USC)
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> estimation of the variance components in the 3 x 3 random effect
one-way layout, under normality assumptions and weighted squared
error loss

Xj=p+ai+e; forallije{1,2,3}

» normality assumptions:
aj ~N(0,vs), € ~N(0,ve), all independent

= Xj ~ N(u,v,+ ve) dependent, p € (—00,00), Va, Ve € (0,00)



example: estimation of variance components

» estimates v, and v, of variance components v, and v, are functions

of
3 3 3
SSe=3 Y (xj— %) and SS5,=3) (% —x.)%
i=1 j=1 i=1
where
13 1
legzxur )?':522)(’1’
j=1 i=1 j=1
SS, SS;
¢ ~x2, and 3 X5



example: estimation of variance components

» estimates v, and v, of variance components v, and v, are functions

of
3 3 3
SSe=>"> (xj—%.)* and SS,=3> (% —x.)%,
i=1 j=1 i=1
where
1< 1<
N D S
Jj=1 i=1 j=1
SS. 5 35S, 5
~ Y&, and
Ve X6 vat % Ve X2
» invariant loss functions:
)2 PRy
L(Ve,ye):;;M and  L(v,, @):M
Ve (va+ 3 ve)?
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example: estimation of variance components

V;—Ve 2
5 G e
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Va/(Va+Ve)
MPL
ANOVA = ANOVA+ = MINQU
ML
ReML
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ReML = ANOVA+
nonneg. MINQ min. bias
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present and future research
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comparison/combination with other approaches in various
applications

application to robustness problems
(relaxation of i.i.d. assumption, robust likelihood)

application to imprecise probability theory
(better updating, possibilistic previsions, convex set of
non-normalized measures)

application to graphical models
(probabilistic and non-probabilistic aspects of uncertainty)

application to financial risk measures
(derivation and interpretation of convex risk measures)



