The likelihood approach to statistics

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

January 15, 2009

 foundations of statistics (reasoning and decision making under uncertainty)

 foundations of statistics (reasoning and decision making under uncertainty)

 PhD with Frank Hampel at ETH Zurich (November 2002 – March 2007): Statistical Decisions Based Directly on the Likelihood Function

 foundations of statistics (reasoning and decision making under uncertainty)

- PhD with Frank Hampel at ETH Zurich (November 2002 – March 2007): Statistical Decisions Based Directly on the Likelihood Function
- complex uncertainty: simple randomness is superposed by non-stochastic aspects of uncertainty (model uncertainty)

 foundations of statistics (reasoning and decision making under uncertainty)

- PhD with Frank Hampel at ETH Zurich (November 2002 – March 2007): Statistical Decisions Based Directly on the Likelihood Function
- complex uncertainty: simple randomness is superposed by non-stochastic aspects of uncertainty (model uncertainty)
- Postdoc with Thomas Augustin at LMU Munich (SNSF Research Fellowship, October 2007 – March 2009): Decision making on the basis of a probabilistic-possibilistic hierarchical description of uncertain knowledge

 besides the Bayesian and frequentist approaches to statistics, there is also a likelihood approach (Fisher, Barnard, Edwards, ...)

- besides the Bayesian and frequentist approaches to statistics, there is also a likelihood approach (Fisher, Barnard, Edwards, ...)
- *P* = {*P*_θ : θ ∈ Θ} set of probabilistic models:
 each *P*_θ ∈ *P* is a probability measure on (Ω, *A*)

- besides the Bayesian and frequentist approaches to statistics, there is also a likelihood approach (Fisher, Barnard, Edwards, ...)
- *P* = {*P*_θ : θ ∈ Θ} set of probabilistic models:
 each *P*_θ ∈ *P* is a probability measure on (Ω, *A*)
- when data $A \in A$ are observed, the **likelihood function**

 $lik(\theta) \propto P_{\theta}(A)$

describes the $\mathit{relative}$ ability of the models in $\mathcal P$ to forecast the observed data

- besides the Bayesian and frequentist approaches to statistics, there is also a likelihood approach (Fisher, Barnard, Edwards, ...)
- P = {P_θ : θ ∈ Θ} set of probabilistic models: each P_θ ∈ P is a probability measure on (Ω, A)
- when data $A \in \mathcal{A}$ are observed, the **likelihood function**

 $lik(\theta) \propto P_{\theta}(A)$

describes the $\mathit{relative}$ ability of the models in $\mathcal P$ to forecast the observed data

 the likelihood function is a central concept in statistics (both frequentist and Bayesian)

statistical inference

the likelihood approach allows conditional inference without needing precise prior information

statistical inference

the likelihood approach allows conditional inference without needing precise prior information

 likelihood-based inference methods are very successful, in particular maximum likelihood estimates (parametric or nonparametric)

statistical inference

the likelihood approach allows conditional inference without needing precise prior information

 likelihood-based inference methods are very successful, in particular maximum likelihood estimates (parametric or nonparametric)

 surprisingly, no likelihood-based decision making in the statistical literature

► a statistical decision problem is described by a loss function

 $L: \Theta \times \mathcal{D} \rightarrow [0,\infty]$,

 $L(\theta, d)$: loss incurred by making decision d, according to model P_{θ}

► a statistical decision problem is described by a loss function

$$L: \Theta \times \mathcal{D} \rightarrow [0, \infty]$$
,

 $L(\theta, d)$: loss incurred by making decision d, according to model P_{θ}

 Bayesian decision criterion with posterior probability measure π on Θ (obtained from *lik*):

minimize
$$\int L(\theta, d) d\pi(\theta)$$

► a statistical decision problem is described by a loss function

$$L: \Theta \times \mathcal{D} \rightarrow [0, \infty],$$

 $L(\theta, d)$: loss incurred by making decision d, according to model P_{θ}

Bayesian decision criterion with posterior probability measure π on Θ (obtained from *lik*):

minimize
$$\int L(\theta, d) d\pi(\theta)$$

in the likelihood approach (in particular in the likelihood ratio test),
 a nonadditive measure λ on Θ is obtained from *lik*:

$$\lambda(\mathcal{H}) = \sup_{\theta \in \mathcal{H}} lik(heta) \text{ for all } \mathcal{H} \subseteq \Theta$$

► a statistical decision problem is described by a loss function

$$L: \Theta \times \mathcal{D} \rightarrow [0, \infty]$$
,

 $L(\theta, d)$: loss incurred by making decision d, according to model P_{θ}

Bayesian decision criterion with posterior probability measure π on Θ (obtained from *lik*):

minimize
$$\int L(\theta, d) d\pi(\theta)$$

in the likelihood approach (in particular in the likelihood ratio test),
 a nonadditive measure λ on Θ is obtained from *lik*:

$$\lambda(\mathcal{H}) = \sup_{\theta \in \mathcal{H}} lik(heta) \text{ for all } \mathcal{H} \subseteq \Theta$$

likelihood-based decision criterion:

minimize
$$\int L(heta, d) \, \mathrm{d}\lambda(heta)$$

likelihood-based statistical decisions

- the likelihood-based decisions share the properties of the likelihood-based inferences, in particular:
 - asymptotic optimality (consistency)
 - asymptotic efficiency
 - parametrization invariance
 - equivariance

likelihood-based statistical decisions

- the likelihood-based decisions share the properties of the likelihood-based inferences, in particular:
 - asymptotic optimality (consistency)
 - asymptotic efficiency
 - parametrization invariance
 - equivariance
- a simple property (sure-thing principle) characterizes the likelihood-based decision criterion based on the Shilkret integral: the MPL (Minimax Plausibility-weighted Loss) decision criterion:

minimize
$$\int_{\theta \in \Theta}^{S} L(\theta, d) d\lambda(\theta) = \sup_{\theta \in \Theta} lik(\theta) L(\theta, d)$$

 estimation of the variance components in the 3 × 3 random effect one-way layout, under normality assumptions and weighted squared error loss

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$
 for all $i, j \in \{1, 2, 3\}$

 estimation of the variance components in the 3 × 3 random effect one-way layout, under normality assumptions and weighted squared error loss

$$X_{ij} = \mu + lpha_i + arepsilon_{ij}$$
 for all $i, j \in \{1, 2, 3\}$

normality assumptions:

$$lpha_i \sim \mathcal{N}(0, v_a), \ \ arepsilon_{ij} \sim \mathcal{N}(0, v_e), \ \ \text{all independent}$$

 $\Rightarrow \ X_{ij} \sim \mathcal{N}(\mu, v_a + v_e) \ \ \text{dependent}, \ \ \mu \in (-\infty, \infty), \ \ v_a, v_e \in (0, \infty)$

▶ estimates $\hat{v_e}$ and $\hat{v_a}$ of variance components v_e and v_a are functions of

$$SS_e = \sum_{i=1}^{3} \sum_{j=1}^{3} (x_{ij} - \bar{x}_{i.})^2$$
 and $SS_a = 3 \sum_{i=1}^{3} (\bar{x}_{i.} - \bar{x}_{..})^2$,

where

$$\bar{x}_{j.} = \frac{1}{3} \sum_{j=1}^{3} x_{ij}, \quad \bar{x}_{..} = \frac{1}{9} \sum_{i=1}^{3} \sum_{j=1}^{3} x_{ij},$$
$$\frac{SS_e}{v_e} \sim \chi_6^2, \quad \text{and} \quad \frac{\frac{1}{3}SS_a}{v_a + \frac{1}{3}v_e} \sim \chi_2^2$$

▶ estimates $\hat{v_e}$ and $\hat{v_a}$ of variance components v_e and v_a are functions of

$$SS_e = \sum_{i=1}^{3} \sum_{j=1}^{3} (x_{ij} - \bar{x}_{i.})^2$$
 and $SS_a = 3 \sum_{i=1}^{3} (\bar{x}_{i.} - \bar{x}_{..})^2$,

where

$$\bar{x}_{j.} = \frac{1}{3} \sum_{j=1}^{3} x_{ij}, \quad \bar{x}_{..} = \frac{1}{9} \sum_{i=1}^{3} \sum_{j=1}^{3} x_{ij},$$
$$\frac{SS_e}{v_e} \sim \chi_6^2, \quad \text{and} \quad \frac{\frac{1}{3}SS_a}{v_a + \frac{1}{3}v_e} \sim \chi_2^2$$

invariant loss functions:

$$L(v_e, \hat{v_e}) = 3 \frac{(v_e - \hat{v_e})^2}{v_e^2}$$
 and $L(v_a, \hat{v_a}) = \frac{(v_a - \hat{v_a})^2}{(v_a + \frac{1}{3}v_e)^2}$

 comparison/combination with other approaches in various applications

 comparison/combination with other approaches in various applications

 application to robustness problems (relaxation of i.i.d. assumption, robust likelihood)

- comparison/combination with other approaches in various applications
- application to robustness problems (relaxation of i.i.d. assumption, robust likelihood)
- application to imprecise probability theory (better updating, possibilistic previsions, convex set of non-normalized measures)

- comparison/combination with other approaches in various applications
- application to robustness problems (relaxation of i.i.d. assumption, robust likelihood)
- application to imprecise probability theory (better updating, possibilistic previsions, convex set of non-normalized measures)
- application to graphical models (probabilistic and non-probabilistic aspects of uncertainty)

- comparison/combination with other approaches in various applications
- application to robustness problems (relaxation of i.i.d. assumption, robust likelihood)
- application to imprecise probability theory (better updating, possibilistic previsions, convex set of non-normalized measures)
- application to graphical models (probabilistic and non-probabilistic aspects of uncertainty)
- application to financial risk measures (derivation and interpretation of convex risk measures)