Likelihood-based inference for probabilistic graphical models: Some preliminary results

Marco Cattaneo Department of Statistics, LMU Munich cattaneo@stat.uni-muenchen.de

> PGM 2010, Helsinki, Finland 14 September 2010

general problem:

given:

- a set Θ of parameters θ corresponding to **probability distributions** P_{θ}
- the **likelihood function** *lik* on Θ induced by some data: $lik(\theta) \propto P_{\theta}(\text{data})$
- a function $g: \Theta \to \mathbb{R}^+$ describing the quantity of interest $g(\theta)$

calculate: the **profile likelihood function** lik_g on \mathbb{R}^+ defined by

$$\mathit{lik}_g(x) = \max_{\substack{ heta \in \Theta: \ g(heta) = x}} \mathit{lik}(heta) \qquad ext{for all } x \in \mathbb{R}^+$$

basic idea:

if $\theta = \theta_{\alpha}$ maximizes $[g(\theta)]^{\alpha} lik(\theta)$ over all $\theta \in \Theta$ for some $\alpha \in \mathbb{R}$, then it also maximizes $lik(\theta)$ over all $\theta \in \Theta$ such that $g(\theta) = g(\theta_{\alpha})$, and therefore $(g(\theta_{\alpha}), lik(\theta_{\alpha}))$ is a point in the graph of lik_{g} by varying α , the whole graph of lik_g may be obtained; in particular, θ_0 is a ML estimate of θ , $(g(\theta_0), lik(\theta_0))$ and $g(\theta_{\alpha})$ is an increasing function of α 8.0 $(g(\theta_2), lik(\theta_2))$ 0.6 0.4 $(g(\theta_4), lik(\theta_4))$ 0.2 0 ż 1 3 4

5

example (naive classifier):

$class \in \{a, b\}$	complete training dataset:			
$color \in \{red, blue\}$ $size \in \{BIG, small\}$	class	#	#red	#BIG
	а	48	7	39
	b	52	12	30

goal: profile likelihood function for $P(class = a \mid color = red, size = BIG)$

problem formulation:

• each naive Bayes classifier is described by a parameter

$$\theta = \left(\theta_{a}, \theta_{\textit{red} \mid a}, \theta_{\textit{red} \mid b}, \theta_{\textit{BIG} \mid a}, \theta_{\textit{BIG} \mid b}\right) \in \Theta = [0, 1]^{5}$$

- the above training dataset induce the **likelihood function** *lik* on Θ defined by $lik(\theta) \propto \theta_a^{48} (1-\theta_a)^{52} \theta_{red|a}^7 (1-\theta_{red|a})^{41} \theta_{red|b}^{12} (1-\theta_{red|b})^{40} \theta_{BIG|a}^{39} (1-\theta_{BIG|a})^9 \theta_{BIG|b}^{30} (1-\theta_{BIG|b})^{22}$
- as quantity of interest choose

$$g(\theta) = \frac{P(class=a \mid color=red, size=BIG)}{P(class=b \mid color=red, size=BIG)} = \theta_a (1 - \theta_a)^{-1} \theta_{red \mid a} \theta_{red \mid b}^{-1} \theta_{BIG \mid a} \theta_{BIG \mid b}^{-1}$$

application of the basic idea: for each $\alpha \in [-7, 12]$, $[g(\theta)]^{\alpha} lik(\theta) \propto \theta_{a}^{48+\alpha} (1-\theta_{a})^{52-\alpha} \theta_{red|a}^{7+\alpha} (1-\theta_{red|a})^{41} \theta_{red|b}^{12-\alpha} (1-\theta_{red|b})^{40} \theta_{BlG|a}^{39+\alpha} (1-\theta_{BlG|a})^{9} \theta_{BlG|b}^{30-\alpha} (1-\theta_{BlG|b})^{22}$ corresponds to the "likelihood function" induced by a modified "training dataset", and is thus maximized by the "ML estimate"

$$\theta_{\alpha} = \left(\frac{48+\alpha}{100}, \frac{7+\alpha}{48+\alpha}, \frac{12-\alpha}{52-\alpha}, \frac{39+\alpha}{48+\alpha}, \frac{30-\alpha}{52-\alpha}\right)$$

since $\alpha \mapsto g(heta_{lpha})$ maps [-7, 12] in $[0, +\infty]$,

$$\{(g(\theta_{\alpha}), \text{ lik } (\theta_{\alpha})) : \alpha \in [-7, 12]\}$$

is a parametric expression for the graph of lik_g , and therefore

$$\left\{ \left(\frac{g(\theta_{\alpha})}{1+g(\theta_{\alpha})}, \text{ lik } (\theta_{\alpha}) \right) : \alpha \in [-7, 12] \right\}$$

