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Support Vector Regression (SVR) with precise data

data: (x1, y1), ... , (xn, yn) ∈ X × Y
compact

⊂ Rd × R
Reproducing Kernel Hilbert Space: set F of functions f : X → Y , e.g., with the
Gaussian kernel κσ defined for all x , x ′ ∈ X and σ > 0 by

κσ(x , x
′) = exp

(
− 1
σ2 ∥x − x ′∥2

)
,

F is dense in the space C(X ) of continuous functions

regression function: find the function f ∈ F that best describes the relationship be-
tween the variables of interest in the light of the data

general idea: function f ∈ F minimizing the (empirical) risk

E(f ) = 1

n

n∑
i=1

ψ (|yi − f (xi)|) ,

where ψ : R≥0 → R≥0 is convex with ψ(0) = 0, e.g., for the linear loss ψ is defined
by ψ(r) = r for all r ∈ R≥0

 estimated functions are too wiggly when considering large F
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Unpenalized regression function based on Gaussian kernel and
linear loss with precise data (xi , yi ) ∈ R2 where i ∈ {1, ... , 17}



SVR estimate: function f ∈ F minimizing the regularized risk

Eλ(f ) =
1

n

n∑
i=1

ψ (|yi − f (xi)|) + λ ∥f ∥2F ,

where ψ : R≥0 → R≥0 is convex with ψ(0) = 0, and λ ∈ R>0
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λ = 0.01
λ = 10−8

Unpenalized regression function vs. SVR estimate, both
based on Gaussian kernel and linear loss

Representer Theorem (RT): the regression function minimizing Eλ(f ) exists, is unique,
and has the form

f =
n∑

j=1

αj κ( · , xj),

where α1, ... ,αn ∈ R, and κ is the kernel function associated with F
key result underlying the SVR methodology: the minimization of Eλ(f ) becomes a
convex optimization task in n variables α1, ... ,αn, i.e., the RT makes the theoretical
idea practically feasible

core of the proof (see e.g., Steinwart & Christmann (2008)): the structure of F im-
plies that for each f , the orthogonal projection f ′ =

∑n
j=1 α

′
j κ( · , xj) of f on the

subspace spanned by the functions κ( · , xj) satisfies f ′(xi) = f (xi) for all i ∈ {1, ... , n},
and therefore Eλ(f ′) ≤ Eλ(f )

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

1
0.

2
0.

3
y

x

●

●

●
●

●

●
●●

●

●

●
● ●

●

●

●

●

f
f'

SVR estimate f ′ based on Gaussian kernel and linear loss vs.
another f ∈ F with f (xi ) = f ′(xi ) for all i ∈ {1, ... , 17}



minimin and minimax methods for SVR with interval-valued response

interval data: instead of the values y1, ... , yn, only intervals [y 1, y 1], ... , [y n, y n] are ob-
served, with yi ∈ [y i , y i ] for all i ∈ {1, ... , n}

minimin and minimax SVR estimates (Utkin & Coolen (2011)): f ∈ F minimizing

Eλ(f ) =
1

n

n∑
i=1

min
yi∈[y i

,y i ]
ψ (|yi − f (xi)|) + λ ∥f ∥2F and

Eλ(f ) =
1

n

n∑
i=1

max
yi∈[y i

,y i ]
ψ (|yi − f (xi)|) + λ ∥f ∥2F
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minimin SVR estimate vs. minimax SVR estimate, both based on Gaussian kernel and linear loss

RT for minimin and minimax SVR

Lemma 1. The regularized lower and upper risk functionals, Eλ and Eλ, respectively have
unique minimizers f minimin

λ and f minimax
λ in F , respectively.

Proof. The proof can be found in the paper.

Theorem 1. There are αminimin
1 , ... ,αminimin

n ∈ R and αminimax
1 , ... ,αminimax

n ∈ R such that

f minimin
λ : x 7→

n∑
i=1

αminimin
i κ(x , xi) and

f minimax
λ : x 7→

n∑
i=1

αminimax
i κ(x , xi)

are the unique minimizers of Eλ and Eλ in F , respectively.

Proof. Let f ′ denote the orthogonal projection of a function f ∈ F on the subspace Fn

spanned by the functions κ(·, xi) with i ∈ {1, ... , n}. Then ∥f ′∥F ≤ ∥f ∥F , and f ′ is
of the form

∑n
i=1 αi κ(·, xi) with α1, ... ,αn ∈ R. Moreover, for each i ∈ {1, ... , n}, the

orthogonality of f ′ − f and κ(·, xi) implies f ′(xi) = f (xi), because

f ′(xi)− f (xi) = ⟨f ′ − f , κ(·, xi)⟩F = 0.

Therefore, Eλ(f ′) ≤ Eλ(f ) and Eλ(f ′) ≤ Eλ(f ), and the desired result is implied by
Lemma 1.



SVR analysis of wine quality

wine data: we analyze the red wine sample (n = 1599) of the Vinho Verde wine data set
initially analyzed by Cortez et al. (2009), which is freely available from the UC Irvine
Machine Learning Repository (http://archive.ics.uci.edu/ml/)

relationship of interest: between alcohol content (explanatory variable) and sensory
quality (interval-valued response) of a red wine

results: both minimax SVR analyses suggest an increasing relationship

• SVR with linear kernel and Least Squares (LS) loss (a.k.a. Ridge regression)

• SVR with Gaussian kernel and linear loss
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minimax SVR estimates based on linear kernel and LS loss (left), i.e., κ(x , x ′) = ⟨x , x ′⟩+ 1 for all
x , x ′ ∈ X and ψ(r) = r2 for all r ∈ R≥0, and based on Gaussian kernel and linear loss (right)

conclusions

main contribution of the paper: generalization of the RT to the case with interval
data [y 1, y 1], ... , [y n, y n] ⊂ R, justifying minimin and minimax SVR in this case

no further generalization: the RT for interval-valued response cannot be directly gen-
eralized to the case with interval data [x1, x1], ... , [xn, xn] ⊂ Rd , in which the following
expressions have to be minimized

Eλ(f ) =
1

n

n∑
i=1

min
xi∈[x i ,x i ]

ψ (|yi − f (xi)|) + λ ∥f ∥2F and

Eλ(f ) =
1

n

n∑
i=1

max
xi∈[x i ,x i ]

ψ (|yi − f (xi)|) + λ ∥f ∥2F

• a regression function minimizing Eλ(f ) would have the form f =
∑n

j=1 αj κ( · , xj), where αj ∈ R and
xj ∈ [x j , x j ] for all j ∈ {1, ... , n}, but in general Eλ is not convex

• by contrast, Eλ is convex, but a regression function minimizing Eλ(f ) does not necessarily have the
form f =

∑n
j=1 αj κ( · , xj), where αj ∈ R and xj ∈ [x j , x j ] for all j ∈ {1, ... , n}

the even more general case with interval data [x i , x i ] × [y i , y i ] ⊂ Rd × R for all i ∈
{1, ... , n} also presents the above difficulties
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