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Distinction between Epistemic and Ontic Interpretation (Couso, Dubois, Sánchez, 2014, Springer)

Epistemic data imprecision:
• Imprecise observation of something precise

•Actually precise values may only be observed in a coarse form,
due to an underlying coarsening mechanism

Examples:

•Missing data as a special case

•Coarsening deliberately applied as an anonymization technique

•Matched data sets with not completely identical categories
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Ontic data imprecision:

•Precise observation of some-
thing imprecise

•Truth is represented by
coarse observations

Example:
Answers of indecisive respon-
dents
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Already existing approaches

• Still common to impose strict assumptions and thus to enforce precise results ⇒ Problem: results may be substantially biased
(cf. Figure; πA is parameter of interest, CAR is only satisfied if coarsening parameter 1 = coarsening parameter 2)

•There is a variety of different set-valued approaches aiming at a proper reflection of the available information

– using a Bayesian point of view
(e.g. de Cooman, Zaffalon, Artif. Intell)

– via random sets
(Nguyen, 2006, An Introduction to Random Sets)

– via likelihood-based belief function (Denoeux, 2014, IJAR)

– via the profile likelihood (e.g. Cattaneo, Wiencierz, 2012, IJAR)

– Here: Likelihood-based approach, strongly influenced by the methodology
of partial identification, coarse categorical data only
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Relative bias of π̂A if CAR is assumed (πA=0.6)

Basic idea

Y

Likelihood for parameters p = (p1, . . . , p|ΩY |−1)
T

is uniquely maximized by

p̂Y =
nY

n
, Y ∈ {1, . . . , |ΩY | − 1}

p̂|ΩY | = 1−
∑|ΩY |−1

m=1 p̂m.

Observation model Q Y latent variablecoarse data

Here: error-freeness is assumed

qY |y = P (Y = Y |Y = y)

Y1, . . . , Yn is a random sample

of a categorical response variable in
sample space ΩY = {1, . . . , j, . . . ,K}.

Only realizations Y 1, . . . ,Y n of a sample
Y1, . . . ,Yn of a random variable Y in
sample space ΩY = P(ΩY ) \ ∅ are observed.

pY i
= P (Yi = Y i), i = 1, . . . , n coarsening mechanism

Φ(γ) = p

πi1 = π1, . . . , πiK = πK

L(p) ∝
∏

Y ∈ΩY
p
nY

Y

Main goal: Estimation of
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Y |y, πT

y
)T

under parameter transformations, i.e.:
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Φ(·) in general is not injective
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πij = P (Yi = j|xi) =
exp(βj0+x

T
i βj)

1+
∑K−1

s=1
exp(βs0+x

T
i
βs)

qY |xy = P (Y = Y |X = x, Y = y)

πij = P (Yi = j)

for categories j = 1, . . . ,K − 1 and

πiK =
(

1 +
∑K−1

s=1 exp(βs0 + x
T
i βs)

)−1

(multinomial logit model)

γ= (qT

Y |xy, πT

xy
)T
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[

nx{y}
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xY
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]

q̂Y |xy ∈
[

0,
n
xY

nx{y}+n
xY

]

For fixed x, (nx1, . . . nx|ΩY |) ∼ M(nx, (px1, . . . , px|ΩY |))

with conditional probabilities pxY = P (Y = Y |X = x).
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p
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Likelihood for parameters p = (px1, . . . , px|ΩY |−1)
T

is uniquely

⇒ Γ̂ is set-valued

maximized by

p̂xY =
n
xY

nx
, for x ∈ {0, 1}.

p̂Y p̂YEstimators and can be directly

Considered cases:

1.) Homogeneous case (i.i.d. case)

2.) Case with categorical covariates X
(here the representative case of one
binary covariate is considered)

LATENTOBSERVABLE

obtained via maximum-likelihood estimation:

and thus

and the invariance of the likelihood

Use the connection between

p and γ

Γ̂ = {γ | Φ(γ) = p̂}

Illustration 1:
Y

LATENT

Initial situation

Observation model Q

Y latent variablecoarse data
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OBSERVATION
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Illustration 2: PASS-Data
(German panel study “Labour market and Social Security”; Trappmann, Gundert, Wenzig, Geb-

hardt, 2010, Schmollers Jahrbuch)

•Here: ΩY = {< 1000e(<),≥ 1000e(≥)}
• Some respondents give no suitible answer (“na”; i.e. coarse answer

“< 1000e or ≥ 1000e”): ΩY = {<,≥, na}
i.i.d. case
n< = 238, n≥ = 835, nna = 338 ⇒ π̂< ∈

[
238
1411,

238+338
1411

]
Categorical covariate Unemployment Benefit II (UBII)

income
< ≥ na total

UBII
yes (0) 130 114 75 319
no (1) 108 721 263 1092

total 238 835 338 1411

π̂0< ∈
[

130

319
,

130 + 75

319

]
π̂1< ∈

[
108

1092
,

108 + 263

1092

]
or

β̂<0 ∈ [−0.37, 0.59]

β̂<1 ∈ [−1.83, −1.25]

Reliable Incorporation of Auxiliary Information
Starting from point-identifying assumptions, we use sensitivity parameters to allow inclusion of partial knowledge.

Assumption Coarsening at random (CAR) Subgroup independent coarsening (SIC)

and its generalization R =
1−qna|≥
1−qna|< and its generalizations R1 =

1−qna|0<
1−qna|1< & R2 =

1−qna|0≥
1−qna|1≥

Illustration
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−

q n
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Q

qna|< = qna|≥

R = 4

R ≤ 1:

does not depend on true income category

low income group has a higher
tendency to report in a precise way

Assumptions about exact value of R

e.g.

where R=1 corresponds to CAR.

Rough evaluation of R

i.e. probability of “na”

e.g.

CAR

,

SIC
qna|0< = qna|1< and qna|0≥ = qna|1≥
Reporting “na” does not depend on the receipt of the UBII

Assumption about the exact value of
R1 and R2

Knowledge about the relative magnitude of precise observations
in both subgroups allows more flexible inclusion of information

R1 = R2 = 1 represents SIC

Rough evaluation of R1 and R2

Partial knowledge about the relative magnitude

Estimators
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Exemplary for SIC
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Summary and Outlook

•Via the observation model Q maximum-
likelihood estimators referring to the latent vari-
able may be obtained for both cases

– ... the homogeneous case

– ... the case with categorical covariates

•Proper inclusion of auxiliary information via re-
strictions on Q

Next steps:

•Likelihood-based hypothesis tests and uncer-
tainty regions for coarse categorical data

• Inclusion of auxiliary information by sets of priors

•Consideration of other “deficiency” processes

•Extension to metric covariates?

Ontic poster in

session on Wednesday


