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Distinction between Epistemic and Ontic Interpretation (cous, bubois, Sanchez, 2014, Springer) | RNGCGCGTGEEE

R | - OBSERVABLE LATENT | | -
Epistemic data imprecision: Ontic data imprecision:

e Imprecise observation of something precise

e Precise observation of some- ‘

e Actually precise values may only be observed in a coarse form, “Q thing imprecise
due to an underlying coarsening mechanism ‘ (ﬂ“ﬂm} e Truth is represented by “
<Coarsening

Examples: coarse observations

e Missing data as a special case ‘® o @ Example:

e Coarsening deliberately applied as an anonymization technique -0 Answers of indecisive respon-
Qo @=0 dents

e Matched data sets with not completely identical categories

Already existing approaches

: : : : . . - lative bias of T if CAR i d (Mx=0.6
e Still common to impose strict assumptions and thus to enforce precise results = Problem: results may be substantially biased relaive bias 21T T AR 1S assumed (T=0.9)

(cf. Figure; 74 is parameter of interest, CAR is only satisfied if coarsening parameter 1 = coarsening parameter 2) _0-8:: : : A A
A
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e There is a variety of different set-valued approaches aiming at a proper reflection of the available information
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—using a Bayesian point of view —via likelihood-based belief function (Denoeus, 2014, 1JAR)

coarsening param
o
o

(e.g. de Cooman, Zaffalon, Artif. Intell) —via the proﬁle likelihood (e.g. Cattaneo, Wiencierz, 2012, I[JAR)
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—via random sets —Here: Likelihood-based approach, strongly influenced by the methodology 01 02 03 04 05 08

coarsening param.
(Nguyen, 2006, An Introduction to Random Sets) of partial identification, coarse categorical data only
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Basic idea Illustration 1:

Considered cases: Y coarse data Y latent variable
1.) Homogeneous case (i.i.d. case)

2.) Case with categorical covariates X
(here the representative case of one

OBSERVABLE binary covariate is considered) LATENT

y coarse data Observation model Q Y latent Val‘lable

®(-) is not injective

: - Here: error-freeness is assumed : : : T
Vi,...,Yn of a random variable J in of a categorical response variable in

sample space Q) = P(Qy) \ 0 are observed. 1 sample space Qy = {1,...,4,...,K}. g(DIO B
l 0]

Only realizations H1yeouyWn of a Sample Y17 L 7Yn 1S a random Sample ( N ')

coarsening mechanism Main goal: Estimation of m;; = P(Y; = j)

qg|y:P(y:@|Y:y) Til =T1y...,TiK =TK
doiey = PO =0IX =Y =0) 1 p(y, = jiuy) = ity Illustration 2: PASS-Data

Estimators p# and pa can be directly for categories }7< :1 l,..., K —1and ) (German panel study “Labour market and Social Security”; Trappmann, Gundert, Wenzig, Geb-
. . . [3 . b * . . p— B T B
obtained via maximum-likelihood estimation: TiK (1 + > 1 exp(Bso + x; ,33)) hardt, 2010, Schmollers Jahrbuch)

(multinomial logit model)

Likelihood for parameters p = (p1,...,pjay-1)" e Here: )y = {< 1000€(<)7 > 1000@(2)}

oy
L(p) x [loecoyPa” is uniquely maximized b : b TENSCIINE
() y quely y Use the conmection between e Some respondents give no suitible answer (“na’”; i.e. coarse answer

Py = &, v ef{l,....[Qy -1} p and 7y “< 1000€ or > 1000€7): 2y = {<, >,na}

and thus P, =1- Z,',,,?ill_lﬁm. i.i.d. case

ne =238, n> = 835, Ny, = 338 = 7. € [238 238+338}

4110 1411
€ | Y20 Categorical covariate Unemployment Benefit IT (UBII)

For fixed z, (ngz1,...ng0,|) ~ M(ng, (Pz1s-- -5 DPzj0y]))
with conditional probabilities p,o = P(Y = #|X = x).

and the invariance of the likelihood

. . A n@
under parameter transformations, i.e.: v |y € 0, ~ o1+

income

T :
Likelihood for parameters p = (pz1, - - - ,px|Qy|_1)T < > na total o< 319 319

L(P)“H@e(zy pOO@@ H@eﬂy p11@@ is uniquely F — {'Y ‘ (:[)(7) — p} UBII ves (0) 130 114 75 319 P _1087 108+263] o
maximized by no (1) 108 721 263 1092 11092”1092

() in general is not injective fotal 238 835 338 1411 By € [—0.37, 0.5]
= T is set-valued B [—1.83, —1.25]

(130 130 + 75]

<
for x € {0, 1}. c

Reliable Incorporation of Auxiliary Information Summary and Outlook

Starting from point-identifying assumptions, we use sensitivity parameters to allow inclusion of partial knowledge. eVia the observation model O maximum-

likelihood estimators referring to the latent vari-
able may be obtained for both cases

Assumption | Coarsening at random (CAR) Subgroup independent coarsening (SIC)
1_Qna|2

1_qna|<

: : : 1— 1—
and its generalizations Rj = = & Ry = =

and 1its generalization R = —
1_qna|1< 1_Qna\12

, — ... the homogeneous case
[llustration

Ejj‘fj — ual> e, probability of “na® SIC — ... the case with categorical covariates
= b y nal0< = 4nall< and dna|0> = 4nal1>

does not depend on true income category . s . . . .- . . .
Reporting “na” does not depend on the receipt of the UBII PS Proper inclusion of auxﬂlary information via re-
Assumptions about exact value of R

co |R=1 - | Assumption about the exact value of R, and Ry strictions on Q

where R=1 corresponds to CAR. Knowledge about the relative magnitude of precise observations
in both subgroups allows more flexible inclusion of information Next steps:

Rough evaluation of R _ ts SIC
R<1: low income group has a higher TEpresents
Q €.g. — 7' tendency to report in a precise way

e Likelihood-based hypothesis tests and uncer-

Rough evaluation of R, and R, tainty regions for coarse categorical data
Partial knowledge about the relative magnitude

e Inclusion of auxiliary information by sets of priors

- = fo. = Mo< _M>mo—nino> e Consideration of other “deficiency” processes

nog Mo<Ni>—MNo>N1<L
Exemplary for 51C Ao = i< _Mzno—mino: e Extension to metric covariates?

n1 No<Ni>—No>Ni1<

Estimators




